Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.73-75
/
2024
본 논문에서는 밀 수확량을 증가시키기 위한 일반화된 검출 모델을 제안한다. 일반화 성능을 높이기 위해 CutMix 알고리즘으로 데이터를 증식시켰고, 라벨링 되지 않은 데이터를 최대한 활용하기 위해 Fast R-CNN 기반 Pseudo labeling을 사용하였다. 학습의 정확성과 효율성을 높이기 위해 사전에 훈련된 EfficientDet 모델로 학습하였으며, OOF를 이용하여 검증하였다. 최신 객체 검출 모델과 IoU(Intersection over Union)를 이용한 성능 평가 결과, 제안된 모델이 가장 높은 성능을 보이는 것을 확인하였다.
자연어 기반의 분류모델을 개발할 때 높은 성능을 획득하기 위해서는 데이터의 품질이 중요한 요소이다. 특히 무역상품 국제 분류체계 HS-CODE에서 상품명을 기반으로 HS코드를 분류할 때, 라벨링 된 데이터의 품질에 의해서 분류모델의 성능이 좌우된다. 하지만 현실적으로 확보 가능한 데이터셋에는 데이터 라벨링 오류나 데이터로 활용하기에 특징점이 부족한 데이터들이 다수 존재하기도 한다. 본 연구에서는 분류모델 학습 데이터의 정제 방법론으로, 딥러닝 기반 노이즈 검출 알고리즘을 제안한다. 분류 대상의 특징점이 분류 경계값 주변에 존재한다면 분류하기 모호한 노이즈 데이터일 가능성이 높다고 가정하고, 해당 노이즈 데이터를 검출하는 방법으로 딥러닝 기술을 활용한다. 해당 경계값 노이즈 검출 알고리즘으로 데이터를 정제한 뒤 학습모델의 성능비교 결과, 기존 대비 우수한 분류 정확도를 기록하였다.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.3
/
pp.513-520
/
2020
Recently, the development of a vision inspection system using machine learning has become more active. This study seeks to develop a defect inspection model using machine learning. Defect detection problems for images correspond to classification problems, which are the method of supervised learning in machine learning. In this study, defect detection models are developed based on algorithms that automatically extract features and algorithms that do not extract features. One-dimensional CNN and two-dimensional CNN are used as algorithms for automatic extraction of features, and MLP and SVM are used as algorithms for non-extracting features. A defect detection model is developed based on four models and their accuracy and AUC compare based on AUC. Although image classification is common in the development of models using CNN, high accuracy and AUC is achieved when developing SVM models by converting pixels from images into RGB values in this study.
This paper presents an automatic approach to detect face and facial feature from face images based on the color information and deformable model. Skin color information has been widely used for face and facial feature diction since it is effective for object recognition and has less computational burden, In this paper, we propose how to compensates varying light condition and utilize the transformed YCbCr color model to detect candidates region of face and facial feature from color images, Moreover, the detected face facial feature areas are subsequently assigned to a initial condition of active contour model to extract optimal boundaries of face and facial feature by resolving initial boundary problem when the active contour is used, The experimental results show the efficiency of the proposed method, The face and facial feature information will be used for face recognition and facial feature descriptor.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.11a
/
pp.173-176
/
2009
본 논문에서는 영상 정보와 오디오 정보 분석을 이용하여 TV 골프 방송 프로그램에서 중요 이벤트 구간을 검출하고 요약 하는 알고리즘을 제안한다. 제안하는 알고리즘에서는 입력되는 TV 골프 동영상을 영상 신호와 오디오 신호로 분리한 후에, 연속적인 오디오 스트림을 내용 기반의 오디오 구간으로 분류한 뒤 오디오 이벤트 구간을 검출하고, 이와 병렬적으로 영상정보에서 선수들의 플레이 장면을 검출한다. 플레이 장면 검출에 있어서는 방송 환경이나 날씨 등의 변화하는 다양한 조건에 대해 플레이 장면에 대한 오프라인 모델과 함께 경기 내에서 발생한 온라인 모델에 대한 학습을 혼합 적용함으로써 검출 성능을 높였다. 오디오 신호로부터 관중들의 박수소리와 스윙 사운드를 통해 검출된 오디오 이벤트와 플레이 장면은 이벤트 장면 검출 및 요약본 생성을 위해 사용된다. 제안된 알고리즘은 멀티 모달 정보를 이용하여 이벤트 구간 검출을 수행함으로써 중요 이벤트 구간 검출의 정확도를 높일 수 있었고, 검출된 이벤트 구간에 대한 요약본 생성을 통해 골프 경기를 시청하는 사용자가 원하는 부분을 빠르게 브라우징하여 시청하는 것이 가능하여 높은 사용자 만족도를 얻을 수 있었다.
This paper proposes techniques for detecting the damage status of each part of a vehicle using YOLOv4. The proposed algorithm learns the parts and their damages of the vehicle through YOLOv4, extracts the coordinate information of the detected bounding boxes, and applies the algorithm to determine the relationship between the damage and the vehicle part to derive the damage status for each part. In addition, the technique using VGGNet, the technique using image segmentation and U-Net model, and Weproove.AI deep learning model, etc. are included for objectivity of performance comparison. Through this, the performance of the proposed algorithm is compared and evaluated, and a method to improve the detection model is proposed.
In this paper, we propose a deep learning architecture that can effectively detect speech segmentation in broadcast contents. We also propose a multi-scale time-dilated layer for learning the temporal changes of feature vectors. We implement several comparison models to verify the performance of proposed model and calculated the frame-by-frame F-score, precision, and recall. Both the proposed model and the comparison model are trained with the same training data, and we train the model using 32 hours of Korean broadcast data which is composed of various genres (drama, news, documentary, and so on). Our proposed model shows the best performance with F-score 91.7% in Korean broadcast data. The British and Spanish broadcast data also show the highest performance with F-score 87.9% and 92.6%. As a result, our proposed model can contribute to the improvement of performance of speech detection by learning the temporal changes of the feature vectors.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.8C
/
pp.661-666
/
2010
In this paper, we apply a likelihood ratio test (LRT) to a non-negative matrix factorization (NMF) based voice activity detection (VAD) to find optimal threshold. In our approach, the NMF based VAD is expressed as Euclidean distance between noise basis vector and input basis vector which are extracted through NMF. The optimal threshold each of noise environments depend on NMF results distribution in noise region which is estimated statistical model-based VAD. According to the experimental results, the proposed approach is found to be effective for statistical model-based VAD using LRT.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.4
/
pp.100-106
/
2008
In this paper we apply a discriminative weight training employing power spectral flatness measure (PSFM) to a statistical model-based voice activity detection (VAD) in various noise environments. In our approach, the VAD decision rule is expressed as the geometric mean of optimally weighted likelihood ratio test (LRT) based on a minimum classification error (MCE) method which is different from the previous works in th at different weights are assigned to each frequency bin and noise environments depending on PSFM. According to the experimental results, the proposed approach is found to be effective for the statistical model-based VAD using the LRT.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.473-479
/
2002
NHPP에 근거한 SRGM을 구성하는 새로운 안을 제시한다. 본 논문의 주요 초점은 소프트웨어 신뢰도모델링에서 효과적인 파라미터분해기법을 제공하는 것이다. 이는 테스트노력과 결함검출비를 동시에 고려하는 것이다. 일반적으로, 소프트웨어결함검출/제거메카니즘은 이전의 검출/제거결함과 테스트노력을 어떻게 활용하느냐에 달려있다. 실제 현장 연구로부터 우리는 테스트노력소모패턴을 추론하여 FDR의 경향을 예측할 수 있을 것으로 생각된다. 결함검출이 증가, 감소 및 일정한 것 등 광범위에 걸쳐서 나타나는 경향을 잡아내는 고유의 융통성을 가지는 하나의 시변수집합인 FDR모델에 근거한 테스트노력을 개발하였다. 이 스킴은 구조에 융통성이 있어서 여러 가지 테스트노력을 고려하여 광범위한 소프트웨어 개발 환경을 모델화할 수 있다 본 논문에서는 FDR을 기술하고, 관련된 테스트 행위를 이러한 새로운 모델링접근법에 연합시킬 수 있다. 우리의 모델과 그리고 이것과 관련된 파라미터 분해기법을 적용한 것을 여러 가지 소프트웨어 프로젝트에서 도출한 실제 데이터집합을 통하여 시연한다. 분석결과에 의하면 SRGM에 관한 테스트노력과 FDR을 결합하기 위한 제안된 구조가 상당히 정확한 예측능력을 보여주고 있으며, 실제 수명상황을 좀더 정대하게 설명해 준다. 이 기법은 광범위한 소프트웨어시스템에 쓰일 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.