The Journal of the Convergence on Culture Technology
/
v.8
no.1
/
pp.409-415
/
2022
In computer vision, an image of a measurement target is acquired using a camera. And feature values, vectors, and regions are detected by applying algorithms and library functions. The detected data is calculated and analyzed in various forms depending on the purpose of use. Computer vision is being used in various places, especially in the field of automatically recognizing automobile parts or measuring the quality. Computer vision is being used as the term machine vision in the industrial field, and it is connected with artificial intelligence to judge product quality or predict results. In this study, a vision system for judging the quality of automobile parts was built, and the results were compared by applying five machine learning classification models to the produced data.
컴퓨터 단층촬영(CT)을 활용한 골격근 단면적은 근감소증과 관련된 기능을 평가하는 데 사용된다. 일반적인 근감소증 연구는 요추 3번의 골격근량을 주로 보지만 암 또는 폐절제술과의 상관관계를 예측하기 위한 다양한 연구에서는 흉추 4번, 7번, 8번, 10번, 12번 다양한 수준의 골격근량으로 연구를 진행하고 있음을 알 수 있다. 본 논문에서는 흉부와 복부 CT 영상에서 근감소증 진단을 위해서 흉추와 요추의 영역별 슬라이스를 검출하기 위해서 CNN 구조의 EfficientNetV2를 전이학습하여 인공지능 모듈을 개발하였다. 인공지능 모듈은 전체 흉부 및 복부 CT 영상에서 Cervical, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, L1, L2, L3, L4, L5, Sacral 총 19 클래스를 검출하도록 하였다. Test 데이터셋을 사용하여 Confusion Matrix와 Grad-CAM으로 모델의 정확도를 시각화하여 보였으며 검증으로 인공지능 모듈의 정확성을 측정하였다. 끝으로 우리가 개발한 다기관 공동연구 지원플랫폼에 적용하여 시각화된 결과를 보였다.
'Deepfake' refers to a video synthesis technique that utilizes various artificial intelligence technologies to create highly realistic fake content, causing serious confusion to individuals and society by being used for generating fake news, fraud, malicious impersonation, and more. To address this issue, there is a need for methods to detect malicious images generated by deepfake accurately. In this paper, we extract and analyze saliency features from deepfake and real images, and detect candidate synthesis regions on the images, and finally construct an automatic deepfake detection model by focusing on the extracted features. The proposed saliency feature-based model can be universally applied in situations where deepfake detection is required, such as synthesized images and videos. To demonstrate the performance of our approach, we conducted several experiments that have shown the effectiveness of the deepfake detection task.
Understanding agent's intent is an essential component of the human-computer interaction of ubiquitous computing. Because correct inference of subject's intention in ubiquitous computing system helps particularly to understand situations that involve collaboration among multiple agents or detection of situations that can pose a particular activity. This paper, inspired by people have a mechanism for interpreting one another's actions and for inferring the intentions and goals that underlie action, proposes an approach that allows a computing system to quickly recognize the intent of agents based on experience data acquired through prior capabilities of activities recognition. To proceed intention recognition, proposed method uses formulations of Hidden Markov Models (HMM) to model a system's prior experience and agents' action change, then makes for system infer intents in advance before the agent's actions are finalized while taking the perspective of the agent whose intent should be recognized. Quantitative validation of experimental results, while presenting an accurate rate, an early detection rate and a correct duration rate with detecting the intent of several people performing various activities, shows that proposed research contributes to implement effective intent recognition system.
In this study, the Ocean Tide Loading (OTL) constituents were detected by the Precise Point Positioning (PPP) technique using GPS. Then, the GPS estimates of OTL constituents were compared with the predictions of the ocean tide models. We picked three permanent GPS stations as test sites and they are ICNW, SEOS, and CJUN. To detect the OTL constituents using GPS, we created vertical coordinate time series at 10-minute intervals using the PPP approach implemented in the GIPSY software. Through the tidal harmonic analysis of this height time series, the four major constituents ($M_2$, $S_2$, $K_1$, $O_1$) were determined. The amplitude obtained from the GPS height time series of the OTL constituents showed best match with the model predictions at CJUN, while the phase showed closest match at ICNW. The amplitude accuracy of the $M_2$, which is the dominant factor out of the 11 major constituents, was 24.8% on average.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.7
/
pp.838-846
/
2004
In the case where both a camera and a target are moving at the same time, the image background is successively changed, and the overlap with other moving objects is apt to be generated. The snake algorithms have been variously used in tracking the object, but it is difficult to be applied in the excessive overlap with other objects and the large bias between the snake and the target. To solve this problem, this paper presents an extended snake model. It includes an additional energy function which considers the temporal variation rate of the snake's area and a SSD algorithm which generates the template adaptive to the snake detected in the previous frame. The new energy function prevents the snake from over-shrinking or stretching and the SSD algorithm with adaptively changing template allows the prediction of the target's position in the next frame. The experimental results have shown that the proposed algorithm successfully tracks the target even when the target is temporarily occluded by other objects.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.11
/
pp.2492-2498
/
2013
In this paper, A lane tracking algoritm is proposed for lane departure warning system. To eliminate perspective effect, input image is converted into Bird's View by inverse perspective mapping. Next, suitable features are extracted for lane detection. Using clustering and lane similarity function with noise suppression features are extracted. Finally, lane model is calculated using RANSAC and lane model is tracked using Kalman Filter. Experimental results show that the proposed algorithm can be processed within 20ms and its detection rate approximately 90% on the highway in a variety of environments.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.5
/
pp.175-182
/
2010
The paper presents a novel algorithm for face and iris detection with the application for driver iris monitoring. The proposed algorithm consists of the following major steps: Skin-color segmentation, facial features segmentation, and iris positioning. For the skin-segmentation we applied a multi-layer perceptron to approximate the statistical probability of certain skin-colors, and filter out those with low probabilities. The next step segments the face region into the following categories: eye, mouth, eye brow, and remaining facial regions. For this purpose we propose a novel segmentation technique based on estimation of facial class probability density functions (PDF). Each facial class PDF is estimated on the basis of salient features extracted from a corresponding facial image region. Then pixels are classified according to the highest probability selected from four estimated PDFs. The final step applies the circular Hough transform to the detected eye regions to extract the position and radius of the iris. We tested our system on two data sets. The first one is obtained from the Web and contains faces under different illuminations. The second dataset was collected by us. It contains images obtained from video sequences recorded by a CCD camera while a driver was driving a car. The experimental results are presented, showing high detection rates.
There are four types of human beings according to the Sasang Typology, Oriental medical doctors frequently prescribe healthcare information and treatment depending on one's type, The feature ratios (Table 1) on the human face are the most important criterions to decide which type a patient is. In this paper, we proposed a system to extract these feature ratios from the people's side face, There are two challenges in acquiring the feature ratio: one that selecting representative features; the other, that detecting region of interest from human profile facial image effectively and calculating the feature ratio accurately. In our system, an adaptive color model is used to separate human side face from background, and the method based on geometrical model is designed for region of interest detection. Then we present the error analysis caused by image variation in terms of image size and head pose, To verify the efficiency of the system proposed in this paper, several experiments are conducted using about 173 korean's left side facial photographs. Experiment results shows that the accuracy of our system is increased 17,99% after we combine the front face features with the side face features, instead of using the front face features only.
In this paper, we proposed ACM (Anti-filler confidence measure) to compensate shortcoming of conventional RLJ-CM (RLJ-CM) and NCM (normalized CM), and integrated proposed ACM and conventional NCM using HCM (hybrid CM). Proposed ACM analyzes that FA (false acceptance) happens by the construction method of anti-phone model, and presumed phoneme sequence in actuality using phoneme recognizer to compensate this. We defined this as anti-phone model and used in confidence measure calculation. Analyzing feature of two confidences measure, conventional NCM shows good performance to FR (false rejection) and proposed ACM shows good performance in FA. This shows that feature of each other are complementary. Use these feature, we integrated two confidence measures using weighting vector α And defined this as HCM. In MDR (missed detection rate) 10% neighborhood, HCM is 0.219 FA/KW/HR (false alarm/keyword/hour). This is that Performance improves 22% than used conventional NCM individually.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.