• 제목/요약/키워드: 검출 모델

Search Result 1,728, Processing Time 0.036 seconds

Object Detection of Infrared Thermal Image Based on Single Shot Multibox Detector Model for Embedded System (임베디드 시스템용 Single Shot Multibox Detector Model 기반 적외선 열화상 영상의 객체검출)

  • NA, Woong Hwan;Kim, Eung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.9-12
    • /
    • 2019
  • 지난 수 년 동안 계속해서 일반 실상 카메라를 이용한 영상분석기술에 대한 연구가 활발히 진행되고 있다. 최근에는 딥러닝 기술을 적용한 지능형 영상분석기술로 발전해 왔으며 국방기지방호, CCTV, 사용자 얼굴인식, 머신비전, 자동차, 드론 산업이 활성화되면서 많은 시너지를 효과를 일으키고 있다. 그러나 어두운 밤과 안개, 날씨, 연기 등 다양한 여건에서 따라서 카메라의 영상분석 정확성 감소와 오류가 수반될 수 있으며 일반적으로 딥러닝 기술을 활용하기 위해서는 고사양의 GPU를 필요로 하기 때문에 다른 추가적인 시스템이 요구된다. 이에 본 연구에서는 열적외선 영상의 객체 검출에 적용하기 위해 SSD(Single Shot MultiBox Detector) 기반의 경량적인 MobilNet 네트워크로 재구성하여, 모바일 기기 등 낮은 사양의 낮은 임베디드 시스템에서도 활용 할 수 있는 방법을 제안한다. 모의 실험결과 제안된 방식의 모델은 적외선 열화상 카메라에서 객체검출과 학습시간이 줄어든 것을 확인 할 수 있었다.

  • PDF

Detection of Object Area by Modeling of Motion Field in Automobile Driving Environment (자동차 주행 환경에서 모델링된 움직임 필드를 이용한 객체 영역검출)

  • Lee, Dong Hee;Yi, Kang;Kang, Dong Wook;Jung, Kyeong Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.5-7
    • /
    • 2018
  • 지능형 자동차는 역사가 깊은 연구 분야이다. 과거에는 낮은 하드웨어 성능에 맞추기 위하여 복잡한 알고리즘을 경량화하면서 성능을 유지하고자 하는 제한적인 연구들이 주로 이루어졌으나, 최근 하드웨어 성능이 높아지면서는 다양한 알고리즘 적용이 가능해졌기 때문에 매우 활발하게 연구되는 분야가 되었다. 본 논문은 차량의 주행 특성을 반영한 움직임 벡터 필드 모델링을 수행하고, 이 모델 값과 실제 추정된 움직임 벡터와의 차이를 이용해서 차량의 후보 영역을 검출하는 객체 영역 검출 알고리즘을 제안한다. 제안하는 움직임 벡터 필드 모델링 기법은 기존의 움직임 벡터 추정 기법에 비해 계산량이 적고, 음영 영역이나 밝기가 포화된 영역에서도 움직임 필드를 모델링해낼 수 있는 장점이 있어서 상용화된 블랙박스에 적용이 가능하다.

  • PDF

SIFT Image Feature Detect based on Deep learning (딥 러닝 기반의 SIFT 이미지 특징 검출)

  • Lee, Jae-Eun;Moon, Won-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.122-123
    • /
    • 2018
  • 본 논문에서는 옥타브(sacle vector, octave)를 0, 시그마(sigma)는 1.6, 간격(intervals)은 3으로 설정하여 검출한 RobHess SIFT 특징들로 데이터 셋을 만들어 딥 러닝 모델인 VGG-16을 기반으로 SIFT 이미지 특징을 검출하는 방법을 제안한다. DIV2K 데이터 셋을 $33{\times}33$ 크기로 잘라서 데이터 셋을 구성하였고, 흑백 영상으로 판별하는 SIFT와는 달리 RGB 영상을 사용 하였다. 영상을 좌 우 반전, 밝기, 회전, 크기를 조절하여 원본 영상을 변형시켜 네트워크 학습 및 평가를 진행하였다. 네트워크는 영상의 가운데에 위치한 픽셀이 특징점인지 아닌지를 판별한다. 검증 데이터의 결과 98.207%의 정확도를 얻었다.

  • PDF

A traffic light tracking algorithm for real time recognition of traffic signal (교통 신호의 실시간 인식을 위한 교통신호등 추적 알고리즘)

  • Bang, Min-Young;Lee, Bong-Hwan;Lee, Kyu-Won
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.90-93
    • /
    • 2009
  • 본 논문은 자동차 자동운행 시스템 연구 분야의 한 부분인 자동차 운행 중 도로상에 위치한 교통 신호등을 추적을 통해 검출하고, 인식하기 위한 방법과 관련된 연구이다. 교통 신호등은 색상 정보를 포함한 광원을 갖는 물체로서 표현되어지고 운전자에게 안전을 위해 준수해야 할 신호정보로써 제공되어 진다. 본 논문에서는 이러한 교통신호등의 인식을 위해 명도 분포도를 이용하여 관심영역을 필터링하고, 마스크와 HSI 색 공간영역에서의 색상과 채도, 밝기 정보를 이용한 유효값을 검출, 좌표변환, 보간법, YUV 모델을 이용한 그레이 영상으로의 변환, 닫힘 연산, 선명화 연산, 템플릿 매칭 방법을 적용함으로써 가로등과 같은 주변 환경이 갖는 색정보로부터 교통 신호등의 신호를 검출하고 인식하도록 하였다.

An adult image classification using Haar-like feature (Haar-like 특징을 이용한 유해영상 분류)

  • Park, Min-Su;Kim, Yong-Min;Park, Chan-Woo;Park, Ki-Tae;Moon, Young-Shik
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.372-373
    • /
    • 2011
  • 인터넷 매체가 급증함에 따라 많은 이들에게 쉽게 노출 되어 유포되고 있는 유해 영상을 검출하기 위해 다양한 분류 방법에 대한 연구들이 이루어지고 있다. 본 논문에서 유해 영상 내의 피부색 영역에서의 Haar-like 특징을 추출하여 유해 영상을 분류하는 방법을 제안한다. 이를 위해, 첫 번째 단계에는 샘플 영상에 대하여 기존에 제안된 피부색 검출 방법을 적용하고, 두 번째 단계에는 검출된 피부색 영역 내의 Haar-like 특징을 추출한다. 각 샘플 영상에서 추출한 특징들은 SVM(Support Vector Machine)을 이용하여 각각 2000 장의 유해, 무해 영상을 학습한다. 학습된 모델은 유해 및 무해 영상이 혼합되어 있는 영상 집합들을 분류하는데 사용한다.

Real-time face detection in embedded system (실시간 얼굴 검출을 위한 임베디드 시스템에서의 구현방법)

  • Yoo, Hye-Bin;Park, Sung-Hyun;Jeong, Hye-Won;Park, Myung-Suk;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.1066-1069
    • /
    • 2020
  • 본 논문에서는 임베디드 GPU 보드를 탑재한 로봇에서의 검출 결과를 원격지에서 확인할 수 있는 방법에 대해 기술하였다. 딥러닝 모델의 연산량을 줄이는 방법 대신 Nvidia에서 제공하는 라이브러리를 이용하여 성능을 개선하였고, 로봇의 배터리 소모를 최소화하기 위해 실시간 영상 통신이 아닌 검출이 되었을 시에만 통신이 되게 하여 보다 긴 구동 시간을 얻도록 하였다.

Object Detection Network Feature Map Compression using CompressAI (CompressAI 를 활용한 객체 검출 네트워크 피쳐 맵 압축)

  • Do, Jihoon;Lee, Jooyoung;Kim, Younhee;Choi, Jin Soo;Jeong, Se Yoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.7-9
    • /
    • 2021
  • 본 논문은 Detectron2 [1]에서 지원하는 객체 검출 임무 수행 네트워크의 과정 중에서 추출한 피쳐 맵을 신경망 기반으로 압축하는 방법을 제안한다. 이를 위해, 신경 망 기반 영상 압축을 지원하는 공개 소프트웨어인 CompressAI [2] 모델 중 하나인 bmshj2018-hyperprior 의 압축 네트워크를 활용하여 임무 수행 네트워크의 과정 중 스탬 레이어(stem layer)에서 추출된 피쳐 맵을 압축하도록 학습시켰다. 또한, 압축 네트워크의 입력 피쳐 맵의 너비와 높이 크기가 64 의 배수가 되도록 객체 검출 네트워크의 입력 영상 보간 값을 조정하는 방법도 제안한다. 제안하는 신경망 기반 피쳐 맵 압축 방법은 피쳐 맵을 최근 표준이 완료된 차세대 압축 표준 방법인 VVC(Versatile Video Coding, [3])로 압축한 결과에 비해 큰 성능 향상을 보이고, VCM 앵커와 유사한 성능을 보인다.

  • PDF

Objedet detection using TensorRT engine and SSD (TensorRT 엔진과 SSD를 이용한 Face detection)

  • Yoo, Hye-Bin;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.574-576
    • /
    • 2020
  • 최근에는 딥러닝 기술의 발달로 물체 인식 및 검출에 관한 기술들 또한 발탄하고 있다. 검출에 관한 여러 기법(Faster R-CNN, R-CNN, YOLO, SSD 등) 중 SSD는 다른 기법들과는 다르게 높은 정확도와 빠른 속도가 특징이다. 동시에 여러 detection network들도 쉽게 이용이 가능하다. 본 논문에서는 detection netowork중 Mobilenet V2 network를 이용하여 SSD와 결합해 모델을 훈련하고, TensorRT engine을 이용하여 더 빠른 속도로 검출할 수 있는 방법에 대해 논의한다. 이 방법을 통해 face detector를 만들어 여러 상황에서 쓰일 수 있도록 한다.

LandsatTM을 이용한 도시온도와 도시NDVI의 상관계수 추출을 위한 래스터GIS기반 중력모델에 관한 연구

  • Sin, Eon-Seok;Kim, Hyeong-Mu;Lee, Jae-Bong;Lee, Hong-Ro
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.197-202
    • /
    • 2004
  • 도시의 변화탐지와 예측을 위한 기존의 중력모델은 주로 벡터기반 거리와 면적척도를 사용하였다. 위성영상이 폭넓게 활용되는 추세를 보이고 있는 최근에는 이 위성영상을 이용한 효과적인 래스터GIS기반 중력모델에 대한 연구가 필요하다. 본 연구는 래스터GIS기반 중력모델 방법을 제안하여 이를 전북 군산시 도시변화탐지에 적용하고 지표온도, 토지피복, 식생 변수를 검증하여 지표온도와 코지피복, 식생지수와의 +0.794의 강한 정의 상관관계를 검출함으로써 제안한 위성영상을 이용한 래스터GIS기반 중력모델이 육상 도시변화탐지 모니터링에 매우 효과적임을 입증할 수 있었다.

  • PDF

Software Reliability Prediction Incorporating Information from a Similar Project (ACE64/256) (유사 프로젝트(ACE64/256)로부터 얻은 경험 데이터에 의한 소프트웨어 신뢰도 예측)

  • Lee, J.K.;Shin, S.K.;Nam, S.S.;Park, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.15 no.5 s.65
    • /
    • pp.94-102
    • /
    • 2000
  • 시험기간 동안 수집된 고장 데이터를 이용하여 소프트웨어 신뢰도를 예측할 수 있는 모델은 많으나 이 예측 방법은 정확하지 못하며, 특히 초기 시험 단계에서는 더욱 더 부정확하여 예측자들은 이러한 소프트웨어 신뢰도 모델의 적용을 주저한다. 한편 소프트웨어 신뢰도 성장 모델은 유사 프로젝트나 개발 초기에 얻은 정보를 가지고는 신뢰도 예측 데이터로 활용이 불가능하다. 예를 들면 최근의 소프트웨어 시스템들은 항시 유사 프로젝트들로부터 활용이 가능한 일련의 정보와 동일 응용 영역의 초기 또는 최신의 정보들이 변경, 개선되기 때문이다. 본 논문에서는 유사한 프로젝트로부터 얻은 공통의 데이터들을 활용하여 소프트웨어 신뢰도를 예측할 수 있는 방법들을 제안한다. 특히 일반적으로 사용되고 있는 Goel-Okumoto(G-O) 모델이나 고장 검출률을 이용하거나 시험 데이터를 활용하는 방법 등을 이용하여 모델 파라미터를 추정하고 실제 프로젝트 수행중에 얻어진 각종 결과를 토대로 해서 Numerical Algorithm이 아닌 통계적인 관점의 분석 결과와 MLE(Maximum Likelihood Estimation) 추정 방법 등을 동원하여 초기에 우리 프로젝트에 맞는 정확한 소프트웨어 신뢰도 평가 방법을 제안하였다.