• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.039 seconds

Generation of Video Clips Utilizing Shot Boundary Detection (샷 경계 검출을 이용한 영상 클립 생성)

  • Kim, Hyeok-Man;Cho, Seong-Kil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.582-592
    • /
    • 2001
  • Video indexing plays an important role in the applications such as digital video libraries or web VOD which archive large volume of digital videos. Video indexing is usually based on video segmentation. In this paper, we propose a software tool called V2Web Studio which can generate video clips utilizing shot boundary detection algorithm. With the V2Web Studio, the process of clip generation consists of the following four steps: 1) Automatic detection of shot boundaries by parsing the video, 2) Elimination of errors by manually verifying the results of the detection, 3) Building a modeling structure of logical hierarchy using the verified shots, and 4) Generating multiple video clips corresponding to each logically modeled segment. The aforementioned steps are performed by shot detector, shot verifier, video modeler and clip generator in the V2Web Studio respectively.

  • PDF

Signal Subspace-based Voice Activity Detection Using Generalized Gaussian Distribution (일반화된 가우시안 분포를 이용한 신호 준공간 기반의 음성검출기법)

  • Um, Yong-Sub;Chang, Joon-Hyuk;Kim, Dong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper we propose an improved voice activity detection (VAD) algorithm using statistical models in the signal subspace domain. A uncorrelated signal subspace is generated using embedded prewhitening technique and the statistical characteristics of the noisy speech and noise are investigated in this domain. According to the characteristics of the signals in the signal subspace, a new statistical VAD method using GGD (Generalized Gaussian Distribution) is proposed. Experimental results show that the proposed GGD-based approach outperforms the Gaussian-based signal subspace method at 0-15 dB SNR simulation conditions.

Wavelet Transform based Robust Face Detection (명암변화에 강한 웨이블릿 변환 기반의 얼굴검출)

  • Cho, Chi-Young;Kim, Soo-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.489-492
    • /
    • 2005
  • In this paper, we present a system for robust face detection based on wavelet transform using the standard models of image distortion. In the previous works, it was known to be difficult to treat a distorting of image information such as noises and light of the images obtained by a still camera and a movie camera. we analyze the high frequence information by using wavelet transform. This information is used for testing the image distortion and constructing the standard models of image distortion. The experimental results show that our extracting method based on standard models of image distortion is very effective.

  • PDF

The Fire Detection Method Using Image Logical Operation and Fire Feature (영상 논리곱 연산과 화재 특징자를 이용한 화재 검출 방법)

  • Piao, Peng-Ji;Moon, Kwang-Seok;Ryu, Ji-Goo;Jung, Shin-Il;Kim, Jong-Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.594-597
    • /
    • 2010
  • This paper proposes a fire detection algorithm using low-cost camera to detect visual features of fire. In the previous work sensor cameras were used, but here we use very simple cameras. This method uses YCbCr and YIQ color model to detect candidate regions of fire. The candidate areas are extracted from the boundaries of the fire. noise removal elimination is performed. Regardless of environmental changes around the fire area, the results of the proposed algorithm are very satisfactory.

  • PDF

A study on the fault detection efficiency of software (소프트웨어의 결함 검출 효과에 관한 연구)

  • Kim, Sun-Il;Che, Gyu-Shik;Jo, In-June
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.737-743
    • /
    • 2008
  • I compare my parameter estimation methodoloay with existing method, considering both of testing effort and fault detecting rate simultaneously in software reliability modeling. Generally speaking, fault detection/removal mechanism depends on how apply previous fault detection/removal and testing effort of S/W. The fault removal efficiency makes large influence to the reliability growth, testing and removal cost in developing stage S/W. This is very useful measure during all the developing stages and much helpful for the developer to estimate debugging efficiency, and furthermore, to anticipate additional working amount.

An efficient Bi-LSTM based method for outlier detection and correction in golf swing motion estimation (골프 스윙 모션 추정에서 Bi-LSTM 기반의 효율적인 이상치 검출 및 보정 기법)

  • Ju, Chan-Yang;Park, Ji-Sung;Oh, Gyeong-Su;Choi, Hyun-Jun;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.787-790
    • /
    • 2021
  • 본 논문에서는 최신 모션 인식 기술을 활용하여 골프 스윙 비디오에서 사람의 자세를 추정한 후 다양한 원인으로 오검출된 좌표들을 보정하여 자세 추정의 정확도를 높이는 방법을 제안한다. 기존의 사람 자세 추정 모델은 골프 스윙 데이터에서 오검출, 반전, 불안정성, 미검출의 문제를 보여 정확한 자세 추정을 어렵게 했다. 이를 해결하기 위하여 본 연구에서는 자세 추정시 발생하는 이상치 데이터들을 Bi-LSTM 으로 학습하고 골프 스윙의 특징을 고려한 간단한 규칙을 통하여 이상치 데이터를 효과적으로 검출하고 이를 보정하는 방법을 제안한다. 또한 다양한 실험과 분석을 통하여 제안하는 방법이 골프 스윙 모션에서 사람의 자세를 정확히 추정할 수 있음을 보인다.

3D Facial Animation with Head Motion Estimation and Facial Expression Cloning (얼굴 모션 추정과 표정 복제에 의한 3차원 얼굴 애니메이션)

  • Kwon, Oh-Ryun;Chun, Jun-Chul
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.311-320
    • /
    • 2007
  • This paper presents vision-based 3D facial expression animation technique and system which provide the robust 3D head pose estimation and real-time facial expression control. Many researches of 3D face animation have been done for the facial expression control itself rather than focusing on 3D head motion tracking. However, the head motion tracking is one of critical issues to be solved for developing realistic facial animation. In this research, we developed an integrated animation system that includes 3D head motion tracking and facial expression control at the same time. The proposed system consists of three major phases: face detection, 3D head motion tracking, and facial expression control. For face detection, with the non-parametric HT skin color model and template matching, we can detect the facial region efficiently from video frame. For 3D head motion tracking, we exploit the cylindrical head model that is projected to the initial head motion template. Given an initial reference template of the face image and the corresponding head motion, the cylindrical head model is created and the foil head motion is traced based on the optical flow method. For the facial expression cloning we utilize the feature-based method, The major facial feature points are detected by the geometry of information of the face with template matching and traced by optical flow. Since the locations of varying feature points are composed of head motion and facial expression information, the animation parameters which describe the variation of the facial features are acquired from geometrically transformed frontal head pose image. Finally, the facial expression cloning is done by two fitting process. The control points of the 3D model are varied applying the animation parameters to the face model, and the non-feature points around the control points are changed by use of Radial Basis Function(RBF). From the experiment, we can prove that the developed vision-based animation system can create realistic facial animation with robust head pose estimation and facial variation from input video image.

Moving Human Shape and Pose Reconstruction from Video (비디오로부터의 움직이는 3D 인체 형상 및 자세 복원)

  • Han, Ji Soo;Cho, Myung Rai;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.66-68
    • /
    • 2018
  • 본 논문에서는 비디오로부터 추출된 프레임에서 3D 인체 모델의 복원하고 이를 부드럽게 재생될 수 있도록 보정하는 기법을 제안한다. 매개변수 기반의 모델을 사용하여 자세 및 체형을 복원하도록 접근하고 있다. 매개변수 기반의 인체 모델은 다양한 인체 데이터의 학습을 통해 만들어지며 입력 영상으로부터 최적의 자세와 체형 매개변수 값을 찾아 복원하게 된다. 자세 복원은 CNN 을 사용하여 영상으로부터 인체의 관절 위치를 추정하고 3D 모델로부터 2D 로 투영을 통해 관절 간의 거리가 최소화되는 매개변수 값을 찾아 복원한다. 형상 복원은 2D 영상으로부터 취득된 사람의 윤곽 데이터와 3D 모델의 윤곽 데이터 간의 매칭을 통해 복원된다. 이러한 단일 입력 영상에서 비디오와 같은 다중 입력 영상으로 확장하여 칼만 필터를 적용하여 오류 프레임을 검출하고 이전, 이후 프레임의 매개변수와의 보간을 통해 보다 자연스럽고 정확한 모델을 생성한다.

  • PDF

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Development of an Adult Image Classifier using Skin Color (피부색상을 이용한 유해영상 분류기 개발)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.1-11
    • /
    • 2009
  • To classifying and filtering of adult images, in recent the computer vision techniques are actively investigated because rapidly increase for the amount of adult images accessible on the Internet. In this paper, we investigate and develop the tool filtering of adult images using skin color model. The tool is consisting of two steps. In the first step, we use a skin color classifier to extract skin color regions from an image. In the nest step, we use a region feature classifier to determine whether an image is an adult image or not an adult image depending on extracted skin color regions. Using histogram color model, a skin color classifier is trained for RGB color values of adult images and not adult images. Using SVM, a region feature classifier is trained for skin color ratio on 29 regions of adult images. Experimental results show that suggested classifier achieve a detection rate of 92.80% with 6.73% false positives.