• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.027 seconds

2D Human Pose Estimation Using Component-Based Density Propagation (구성요소 기반 확률 전파를 이용한 2D 사람 자세 추정)

  • Cha, Eun-Mi;Lee, Kyoung-Mi
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.725-730
    • /
    • 2007
  • 본 논문에서는 인체 추적에 필요한 인체의 각 부위들을 구성요소로 각각 검출하여 연결하는 인체 모델을 통해 각 구성요소를 개별적으로 추정하게 된다. 여기서 인체의 구성요소 중 동작 추적에 가장 필요한 6개 부위로 구성된 구성요소인 머리, 몸통, 왼팔, 오른팔, 왼발, 오른발 등을 검출하여 추적한 후, 각 구성요소의 중심값과 색상정보를 이용하여 이전 프레임과 현재 프레임 간에 연결성을 두여 각 구성요소를 개별적으로 확률 전파를 통해 추적되어지고, 각 구성요소의 추적 결과는 구성요소들의 추정 결과를 구성요소 기반 확률 전파를 이용하여 인체의 동작을 추정하는 방법을 제안한다. 입력 영상에서 피부색 등의 색상 정보를 이용하여 인체 부위 또는 인체 모델의 구성 요소들 각각의 중심값과 색상정보를 가지고 확률전파를 통해 이것이 어떤 동작인지 동작 추정이 가능하다. 본 논문에서 제안하는 인체 동작 추적 시스템은 유아의 동작교육에 이용되는 7가지 동작인 걷기, 뛰기, 앙감질, 구부리기, 뻗기, 균형 잡기, 회전하기 등에 적용하였다. 본 논문에서 제안한 인체 모델의 각 구성요소 부위들을 독립적으로 검출하여 평균 96%의 높은 인식률을 나타냈고, 앞서 적용한 7가지 동작에 대해서 실험한 결과 평균 88.5% 성공률을 획득함으로써 본 논문에서 제안한 방법의 타당성을 보였다.

  • PDF

Multiple Moving Object Tracking Using The Background Model and Neighbor Region Relation (배경 모델과 주변 영역과의 상호관계를 이용한 다중 이동 물체 추적)

  • Oh, Jeong-Won;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.361-369
    • /
    • 2002
  • In order to extract motion features from an input image acquired by a static CCD-camera in a restricted area, we need a robust algorithm to cope with noise sensitivity and condition change. In this paper, we proposed an efficient algorithm to extract and track motion features in a noisy environment or with sudden condition changes. We extract motion features by considering a change of neighborhood pixels when moving objects exist in a current frame with an initial background. To remove noise in moving regions, we used a morphological filter and extracted a motion of each object using 8-connected component labeling. Finally, we provide experimental results and statistical analysis with various conditions and models.

Detection and Recognition Method for Emergency and Non-emergency Speech by Gaussian Mixture Model (GMM을 이용한 응급 단어와 비응급 단어의 검출 및 인식 기법)

  • Cho, Young-Im;Lee, Dae-Jong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.254-259
    • /
    • 2011
  • For the emergency detecting in general CCTV environment of our daily life, the monitoring by only images through CCTV information occurs some problems especially in cost as well as man power. Therefore, in this paper, for detecting emergency state dynamically through CCTV as well as resolving some problems, we propose a detection and recognition method for emergency and non-emergency speech by GMM. The proposed method determine whether input speech is emergency or non-emergency speech by global GMM. If emergeny speech, local GMM is performed to classify the type of emergency speech. The proposed method is tested and verified by emergency and non-emergency speeches in various environmental conditions.

Real-time Hand Pose Recognition Using HLF (HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식)

  • Kim, Jang-Woon;Kim, Song-Gook;Hong, Seok-Ju;Jang, Han-Byul;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

A Real Time Flame and Smoke Detection Algorithm Based on Conditional Test in YCbCr Color Model and Adaptive Differential Image (YCbCr 컬러 모델에서의 조건 검사와 적응적 차영상을 이용한 화염 및 연기 검출 알고리즘)

  • Lee, Doo-Hee;Yoo, Jae-Wook;Lee, Kang-Hee;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.57-65
    • /
    • 2010
  • In this paper, we propose a new real-time algorithm detecting the flame and smoke in digital CCTV images. Because the forest fire causes the enormous human life and damage of property, the early management according to the early sensing is very important. The proposed algorithm for monitoring forest fire is classified into the flame sensing and detection of smoke. The flame sensing algorithm detects a flame through the conditional test at YCbCr color model from the single frame. For the detection of smoke, firstly the background range is set by using differences between current picture and the average picture among the adjacent frames in the weighted value, and the pixels which get out of this range and have a gray-scale are detected in the smoke area. Because the proposed flame sensing algorithm is stronger than the existing algorithms in the change of the illuminance according to the quantity of sunshine, and the smoke detection algorithm senses the pixel of a gray-scale with the smoke considering the amount of change for unit time, the effective early forest fire detection is possible. The experimental results indicate that the proposed algorithm provides better performance than existing algorithms.

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

Scene change detection of various color space using difference of histogram (다양한 컬러 공간에서 히스토그램 차이를 이용한 장면 전환 검출)

  • Tak, Soo-Yong;Yoo, Sin;Lee, Byeong-Rae;Lee, Wan-Joo;Ryu, Keun-Suk;Kim, Tack-Gon;Kang, Hyun-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.466-468
    • /
    • 2010
  • 본 논문에서는 다양한 컬러모델 영상을 대상으로 히스토그램의 차이를 이용한 장면 전환 검출 결과를 비교한다. 임계값은 히스토그램의 변화에 따라 변화하는 적응적 임계값 설정 방법을 사용하여 오검출과 미검출의 확률을 줄였다. 점진적인 장면 전환에도 강인한 검출을 위하여 탐색 구간의 변화와 히스토그램의 변화가 급격하게 자주 일어나는 구간의 히스토그램의 변화율을 이용하여 장면 전환을 검출 하는 방법을 제안 하였다.

  • PDF

Interface Implementation using Facial Feature Tracking (얼굴 특징 추적을 이용한 인터페이스 구현)

  • Shin Yun-Hee;Kang Sin-Kuk;Kim Eun-Yi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.274-276
    • /
    • 2006
  • 본 논문은 얼굴 특징 추적을 이용한 새로운 인터페이스를 제안한다. 눈의 움직임만으로 구현된 기존의 시스템은 마우스 클릭 이벤트에 걸리는 waiting time으로 인해 속도 개선이 필요했다. 이를 위해서 본 논문에서는 눈의 움직임 뿐 아니라 입의 움직임도 인식하여 사용자의 요구를 처리할 수 있는 시스템을 개발한다. 제안된 시스템은 얼굴 검출 모듈, 눈 검출 모들, 입 검출 모듈, 얼굴 특징 추적 모듈, 마우스 제어모듈의 5 가지 모듈로 구성되어 있다. 먼저, 피부색 모델과 연결 성분 분석을 이용하여 얼굴을 검출하고 신경망 기반의 분류기와 에지 검출기를 이용하여 검출된 얼굴 영역에서 눈과 입을 찾는다. 이후 프레임에서는 mean-shift 알고리즘과 템플릿 매칭을 이용하여 눈과 입이 정확하게 추적되어 눈의 움직임으로 마우스의 포인트를 움직이고 입의 움직임으로 메뉴나 아이콘을 클릭하게 된다. 제안된 시스템의 효율성을 검증하기 위해서 웹 브라우저의 인터페이스로 활용하였다. 25명의 사용자에 대해 실험한 결과는 제안된 시스템이 보다 편리하고 친숙한 인터페이스로 활용될 수 있다는 것을 보여주었다.

  • PDF

New Fault-detection Methodology of high-level event in VHDL models (VHDL 모델의 상위레벨고장 검출방법)

  • 김강철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.651-654
    • /
    • 2004
  • In this paper, high-level events that adjust or control the conflicts between blocks or process statement, or job sequences are defined compared to low-level events. This paper proposes that high-level events consist of resources conflicts and protocol or specification-dependent conflicts, and two low-level coverage metrics can be used to defect high-level events.

  • PDF

Noise Robust Baseball Event Detection with Multimodal Information (멀티모달 정보를 이용한 잡음에 강인한 야구 이벤트 시점 검출 방법)

  • Young-Ik Kim;Hyun Jo Jung;Minsoo Na;Younghyun Lee;Joonsoo Lee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.136-138
    • /
    • 2022
  • 스포츠 방송/미디어 데이터에서 특정 이벤트 시점을 효율적으로 검출하는 방법은 정보 검색이나 하이라이트, 요약 등을 위해 중요한 기술이다. 이 논문에서는, 야구 중계 방송 데이터에서 투구에 대한 타격 및 포구 이벤트 시점을 강인하게 검출하는 방법으로, 음향 및 영상 정보를 융합하는 방법에 대해 제안한다. 음향 정보에 기반한 이벤트 검출 방법은 계산이 용이하고 정확도가 높은 반면, 영상 정보의 도움 없이는 모호성을 해결하기 힘든 경우가 많이 발생한다. 특히 야구 중계 데이터의 경우, 투수의 투구 시점에 대한 영상 정보를 활용하여 타격 및 포구 이벤트 검출의 정확도를 보다 향상시킬 수 있다. 이 논문에서는 음향 기반의 딥러닝 이벤트 시점 검출 모델과 영상 기반의 보정 방법을 제안하고, 실제 KBO 야구 중계 방송 데이터에 적용한 사례와 실험 결과에 대해 기술한다.

  • PDF