Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.634-636
/
2020
본 논문에서는 딥러닝 (deep learning) 방식을 이용한 5G NR (fifth-generation new radio)의 cell ID (cell identity) 검출 기법을 구현하였다. 5G NR 시스템의 단말 (user equipment)은 초기 접속 (initial access)과정에서 PSS (primary synchronization signal)와 SSS (secondary synchronization signal)을 이용한 동기 획득 및 cell ID 검출이 필요하다. 본 논문에서는 분류 기법 기반의 딥러닝 기술을 이용하여 인공 신경망 모델에 PSS 및 SSS 와 cell ID 의 상관 관계를 학습시키고, 학습된 모델의 성능을 제시하였다.
최근 선정적이고 폭력적인 뉴스 기사 제목의 여과 없는 노출로 인하여 유해한 언어 접촉이 빈번히 이루어지고 있다. 자극적인 단어에 지속적으로 노출되는 것은 인지 능력에 부정적 영향을 주는 것으로 알려져 있다. 따라서 이를 사전에 판별하여 정보를 수용하는 것이 필요하다. 본 논문에서는 KoBERT를 기반으로 한국어 뉴스 기사 제목에서 선정성과 폭력성을 검출하고자 한다. 학습을 위한 뉴스 기사 제목들은 인터넷에서 무작위로 총 9,500개의 데이터를 크롤링 하여 수집하였고, 모델의 말단에 NLNet을 추가하여 문장 전체의 관계를 학습했다. 그 결과 선정성 및 폭력성을 약 89%의 정확도로 검출하였다.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.5
/
pp.143-151
/
2016
The aim of this study is to investigate the optimal algorithm to extract medical radiation induced pixel signal from complementary metal-oxide semiconductor (CMOS) sensors of smartphones camera. The pixel intensity and pixel number of smartphone camera were measured as the X-ray dose was increased. The front camera of the smartphone camera has low noise property and excellent dose response as compared to the back camera of the smartphone. The indirect method which uses scintillation crystal in front of the smartphone camera, couldn't improve the X-ray detection efficiency as compared to the direct method which does not use any scintillator in front of the smartphone camera. When we used the algorithm which employing threshold level on the pixel intensity and pixel number, the dose linearity was more higher for the pixel intensity rather for the pixel number. The use of pixel intensity of Y color component which represents the grey scale, would be efficient in terms of the radiation detection efficiency and reducing the complexity of the image processing. We expect that the radiation dose monitoring can be managed effectively and systematically by using the proposed radiation detection algorithm, thus eventually will contribute to the public healthcare.
나선형 CT 혈관촬영에서 획득한 영상의 분석를 통해서 폐색전증이 의심되는 부위를 자동으로 검출하는 방법으로, 연구 대상은 20명의 환자를 대상으로 분석하였으며 CT 검사 후 방사선과 의사가 정상소견을 받은 환자 5명과 폐색전증이 있는 판독소견을 가진 15명을 대상으로 비교 분석하였다. CT 검사하는 동안에 조영제를 투입하면, 폐색전증이 발생한 부위는 조영제 양과 분포가 불균등하여 명암값이 낮게 검출된다. 검출방법으로는 전처리 작업으로 폐영역만을 분할하고, 분할된 폐영역에서 혈관을 찾기 위해 모폴로지기법를 적용하여 세선화(thinning) 작업을 진행한다. 다음 공정으로는 경계선을 찾아 local watershed를 적용하여 혈관을 검출하고, 검출된 혈관내에서 원형모델을 적용하여 모폴로지(morphology)을 통해 국소 부위의 미세한 농도변화를 인지하여 색전이 발생한 영역을 자동검출하였다. 본 논문의 자동검출시스템에서는 색전증이 있는 경우에 true positive의 발생빈도는 case 당 4.5개가 검출되었다. 정상인의 경우에도 혈류의 흐름, 혈류의 분기점, 노이즈로 인한 false positive의 빈도는 case 당 2.6개가 발생하여 전체적으로 false positive는 5.2개가 검출되었다. 본 논문은 false positive의 비율이 높게 검출되었지만 폐영역 CT 검사의 컴퓨터지원진단시스템(computer aided diagnosis)의 향후 연구과제에 방향을 제시할 수 있을 것이라 사료된다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.267-269
/
1998
본 연구는 공동작업환경에서 워크플로우 개념을 도입한 문서 관리 모델을 제안하고 이를 시스템으로 설계하였다. 제안된 모델은 문서를 관계, 상태, 흐름의 세가지 측면에서 모델링 할 수 있으며, 오류를 자동 검출 할 수 있는 규칙들을 내장하고 있다. 이러한 모델을 기반으로 문서 관리 시스템을 설계하여, 모델이 구현 및 적용 가능함을 보였다. 제안한 모델과 시스템은 전자 결제 시스템이나 전자상거래 등의 문서의 절차적 처리가 필요한 응용들에서 사용될 수 있다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.3
/
pp.107-115
/
2009
Skin color detection is used to classify input pixels into skin and non skin area, and it requires the classifier to have a high classification rate. In previous work, most classifiers used single color model for skin color detection. However the classification rate can be increased by using more than one color model due to the various characteristics of skin color distribution in different color models, and the MLP is also invested as a more efficient classifier with less parameters than other classifiers. But the input dimension and required parameters of MLP will be increased when using two color models in skin color detection, as a result, the increased parameters will cause the huge teaming time in MLP. In this paper, we propose a MLP based classifier with less parameters in two color models. The proposed partially connected MLP based on two color models can reduce the number of weights and improve the classification rate. Because the characteristic of different color model can be learned in different partial networks. As the experimental results, we obtained 91.8% classification rate when testing various images in RGB and CbCr models.
The Bayesian network (BN) model was applied to analyze the characteristic variables that affect compliance with safety inspections of farmed eel during the production stage, using the data from 30,063 cases of eel aquafarm safety inspection in the Integrated Food Safety Information Network (IFSIN) from 2012 to 2021. The dataset for establishing the BN model included 77 non-conforming cases. Relevant HACCP data, geographic information about the aquafarms, and environmental data were collected and mapped to the IFSIN data to derive explanatory variables for nonconformity. Aquafarm HACCP certification, detection history of harmful substances during the last 5 y, history of nonconformity during the last 5 y, and the suitability of the aquatic environment as determined by the levels of total coliform bacteria and total organic carbon were selected as the explanatory variables. The highest achievable eel aquafarm noncompliance rate by manipulating the derived explanatory variables was 24.5%, which was 94 times higher than the overall farmed eel noncompliance rate reported in IFSIN between 2017 and 2021. The established BN model was validated using the IFSIN eel aquafarm inspection results conducted between January and August 2022. The noncompliance rate in the validation set was 0.22% (15 nonconformances out of 6,785 cases). The precision of BN model prediction was 0.1579, which was 71.4 times higher than the non-compliance rate of the validation set.
This paper deals with the adaptation of classification model in the binary mask approach to suppress noise in the noisy environment. The binary mask estimation approach is known to improve speech intelligibility of noisy speech. However, the same type of noisy data for the test data should be included in the training data for building the classification model of binary mask estimation. The eigenvoice adaptation is applied to the noise-independent classification model and the adapted model is used as noise-dependent model. The results are reported in Hit rates and False alarm rates. The experimental results confirmed that the accuracy of classification is improved as the number of adaptation sentences increases.
반도체 성능 향상으로 신호를 전달하는 회로의 단위가 마이크로 미터에서 나노미터로 미세화되어 선폭(linewidth)이 점점 좁아지고 있다. 이러한 변화는 검출해야 할 불량의 크기가 작아지고, 정상 공정상태와 비정상 공정상태의 차이도 상대적으로 감소되어, 공정오차 및 공정조건의 허용범위가 축소되었음을 의미한다. 따라서 검출해야 할 이상징후 탐지가 더욱 어렵게 되어, 높은 정밀도와 해상도를 갖는 검사공정이 요구되고 있다. 이러한 이유로, 미세 공정변화를 파악할 수 있는 신규 검사 및 계측 공정이 추가되어 TAT(Turn-around Time)가 증가하게 되었고, 웨이퍼가 가공되어 완제품까지 도달하는데 필요한 공정시간이 증가하여 제조원가 상승의 원인으로 작용한다. 본 논문에서는 웨이퍼의 검계측 데이터가 아닌, 제조공정 과정에서 발생하는 다양한 센서 및 장비 데이터를 기반으로 웨이퍼 제조 결과가 양품인지 그렇지 않으면 불량인지 구별할 수 있는 가상계측 모델을 제안한다. 기계학습의 여러 알고리즘 중에서 다양한 장점을 갖는 XGBoost 알고리즘을 이용하여 예측모델을 구축하였고, 데이터 전처리(data-preprocessing), 주요변수 추출(feature selection), 모델 구축(model design), 모델 평가(model evaluation)의 순서로 연구를 수행하였다. 결과적으로 약 94% 이상의 정확성을 갖는 모형을 구축하는데 성공하였으나 더욱 높은 정확성을 확보하기 위해서는 반도체 공정과 관련된 Domain Knowledge 를 반영한 모델구축과 같은 추가적인 연구가 필요하다.
Most of previous algorithms of object boundary extraction have been studied for extracting the boundary of single object. However, multiple objects are much common in the real image. The proposed algorithm of extracting the boundary of each of multiple objects has two steps. In the first step, we propose the fast method using the outer and inner products; the initial contour including multiple objects is split and connected and each of new contours includes only one object. In the second step, an improved active contour model is studied to extract the boundary of each object included each of contours. Experimental results with various test images have shown that our algorithm produces much better results than the previous algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.