• Title/Summary/Keyword: 검출 모델

Search Result 1,728, Processing Time 0.035 seconds

Real-Time Detection of Moving Objects from Shaking Camera Based on the Multiple Background Model and Temporal Median Background Model (다중 배경모델과 순시적 중앙값 배경모델을 이용한 불안정 상태 카메라로부터의 실시간 이동물체 검출)

  • Kim, Tae-Ho;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.269-276
    • /
    • 2010
  • In this paper, we present the detection method of moving objects based on two background models. These background models support to understand multi layered environment belonged in images taken by shaking camera and each model is MBM(Multiple Background Model) and TMBM (Temporal Median Background Model). Because two background models are Pixel-based model, it must have noise by camera movement. Therefore correlation coefficient calculates the similarity between consecutive images and measures camera motion vector which indicates camera movement. For the calculation of correlation coefficient, we choose the selected region and searching area in the current and previous image respectively then we have a displacement vector by the correlation process. Every selected region must have its own displacement vector therefore the global maximum of a histogram of displacement vectors is the camera motion vector between consecutive images. The MBM classifies the intensity distribution of each pixel continuously related by camera motion vector to the multi clusters. However, MBM has weak sensitivity for temporal intensity variation thus we use TMBM to support the weakness of system. In the video-based experiment, we verify the presented algorithm needs around 49(ms) to generate two background models and detect moving objects.

Parametric Blending of Hole Patches Based on Shape Difference (형상 차이 기반 홀 패치의 파라미트릭 블렌딩 기법)

  • Park, Jung-Ho;Park, Sanghun;Yoon, Seung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.39-48
    • /
    • 2020
  • In this paper, we propose a new technique for filling holes in triangular mesh. First, arbitrary shaped holes are detected. Second, source and target hole patches are generated through triangulation, refinement, fairing, and smoothing. Finally, the shape difference between the two patches is analyzed and a patch with enhanced features is obtained through blending between patches. The effectiveness of the proposed technique is demonstrated by applying the hole filling technique to the triangular mesh model with various shaped holes.

An Implementation of the Controller for Intelligent Process System using Neural Network (신경회로망을 이용한 지능형 가공 시스템 제어기 구현)

  • 김관형;강성인;이태오
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1135-1141
    • /
    • 2004
  • In this study, this system makes use of the analog infrared rays sensor and converts the feature of fish outline when sensor is operating with CPU(80C196KC). Then, after signal processing, this feature is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error back propagation is used as a teaming algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long when random initial weights are used, off-line teaming is induced to decrease the progress time.

A Study on 2-D Occluded Objects Recognition and Hidden Edge Reconstruction Using Polygonal Approximation and Coordinates Transition (다각근사화와 좌표 이동을 이용한 겹친 2차원 물체 인식 및 은선 재구성)

  • 박원진;유광열;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.5
    • /
    • pp.415-427
    • /
    • 1987
  • This paper presents an experimental model-based vision system which can identify and locate objects in scenes containing multiple occluded parts. The objects are assumed to be rigid and planar parts. In any recognition system the-type of objects that might appear in the image dictates the type of knowledge that is needed to recognize the object. The data is reduced to a sequential list of points or pixels that appear on the boundary of the objects. Next the boundary of the objects is smoothed using a polygonal approximation algorithm. Recognition cosists in finding the prototype that matches model to image. Now the hidden edge is reconstructed by transition model objects into occluded objects. The best match is obtained by optimising some similarity measure.

  • PDF

Registration of the 3D Range Data Using the Curvature Value (곡률 정보를 이용한 3차원 거리 데이터 정합)

  • Kim, Sang-Hoon;Kim, Tae-Eun
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.161-166
    • /
    • 2008
  • This paper proposes a new approach to align 3D data sets by using curvatures of feature surface. We use the Gaussian curvatures and the covariance matrix which imply the physical characteristics of the model to achieve registration of unaligned 3D data sets. First, the physical characteristics of local area are obtained by the Gaussian curvature. And the camera position of 3D range finder system is calculated from by using the projection matrix between 3D data set and 2D image. Then, the physical characteristics of whole area are obtained by the covariance matrix of the model. The corresponding points can be found in the overlapping region with the cross-projection method and it concentrates by removed points of self-occlusion. By the repeatedly the process discussed above, we finally find corrected points of overlapping region and get the optimized registration result.

  • PDF

Automatic Attention Object Extraction Using Feature Maps (특징 지도를 이용한 자동적인 중심 객체 추출)

  • Park Ki-Tae;Kim Jong-Hyeok;Moon Young-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.370-372
    • /
    • 2006
  • 본 논문에서 제안하는 방법은 영상에서 중심 객체를 추출하기 위해 에지와 색상 정보에서 추출한 특집 지도와 배경의 영향을 줄이기 위친 창조 지도(reference map)를 제안한 것이 특징이다. 특징 지도는 다른 영역과 현저하게 구분되는 영역을 검출하기 위해서 영상의 특징 값(feature)들을 이용해서 구성한 영상이라고 할 수 있다. 그리고 창조 지도는 배경의 영향을 최소화하면서, 객체가 존재할 확률이 높은 부분을 나타내는 지도이다. 제안하는 방법은 밝기 차 정보를 가지고 있는 에지와 YCbCr 컬러모델과 HSV 컬러모델의 색상 성분을 특징 값으로 사용한다. 이들 특징 값을 이용해서 특징 지도를 구성하는 방법으로 영상 내 색상 차에 의해서 나타나는 경계부분을 구하는 방법을 사용한다. 이 방법을 사용하여 에지 지도와 두 개의 색상 지도의 3가지 특징 지도를 생성한다. 다음으로, 영상 배경의 영향을 줄이기 위해 참조 지도를 구한다. 구해진 참조 지도와 특징 지도들을 이용해서 결합 지도(combination map)를 생성한다. 결함 지도로부터 다각형의 객체 후보 영역을 구하고, 객체 후보 영역에 영상분할을 적용하여 중심 객체를 추출한다. 실험에 사용된 영상들은 Corel DB를 사용하였으며, 실험결과로써 precision은 84.3%, recall은 81.3%의 성능을 보인다.

  • PDF

Irregular Sound Detection using the K-means Algorithm (K-means 알고리듬을 이용한 비정상 사운드 검출)

  • Chong Ui-pil;Lee Jae-yeal;Cho Sang-jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2005
  • This paper describes the algorithm for deciding the status of the operating machines in the power plants. It is very important to decide whether the status of the operating machines is good or not in the industry to protect the accidents of machines and improve the operation efficiency of the plants. There are two steps to analyze the status of the running machines. First, we extract the features from the input original data. Second, we classify those features into normal/abnormal condition of the machines using the wavelet transform and the input RMS vector through the K-means algorithm. In this paper we developed the algorithm to detect the fault operation using the K-means method from the sound of the operating machines.

  • PDF

Effective machine learning-based haze removal technique using haze-related features (안개관련 특징을 이용한 효과적인 머신러닝 기반 안개제거 기법)

  • Lee, Ju-Hee;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.83-87
    • /
    • 2021
  • In harsh environments such as fog or fine dust, the cameras' detection ability for object recognition may significantly decrease. In order to accurately obtain important information even in bad weather, fog removal algorithms are necessarily required. Research has been conducted in various ways, such as computer vision/data-based fog removal technology. In those techniques, estimating the amount of fog through the input image's depth information is an important procedure. In this paper, a linear model is presented under the assumption that the image dark channel dictionary, saturation ∗ value, and sharpness characteristics are linearly related to depth information. The proposed method of haze removal through a linear model shows the superiority of algorithm performance in quantitative numerical evaluation.

Ai-Based Cataract Detection Platform Develop (인공지능 기반의 백내장 검출 플랫폼 개발)

  • Park, Doyoung;Kim, Baek-Ki
    • Journal of Platform Technology
    • /
    • v.10 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Artificial intelligence-based health data verification has become an essential element not only to help clinical research, but also to develop new treatments. Since the US Food and Drug Administration (FDA) approved the marketing of medical devices that detect mild abnormal diabetic retinopathy in adult diabetic patients using artificial intelligence in the field of medical diagnosis, tests using artificial intelligence have been increasing. In this study, an artificial intelligence model based on image classification was created using a Teachable Machine supported by Google, and a predictive model was completed through learning. This not only facilitates the early detection of cataracts among eye diseases occurring among patients with chronic diseases, but also serves as basic research for developing a digital personal health healthcare app for eye disease prevention as a healthcare program for eye health.

Design and Implementation of a Face Authentication System (딥러닝 기반의 얼굴인증 시스템 설계 및 구현)

  • Lee, Seungik
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2020
  • This paper proposes a face authentication system based on deep learning framework. The proposed system is consisted of face region detection and feature extraction using deep learning algorithm, and performed the face authentication using joint-bayesian matrix learning algorithm. The performance of proposed paper is evaluated by various face database , and the face image of one person consists of 2 images. The face authentication algorithm was performed by measuring similarity by applying 2048 dimension characteristic and combined Bayesian algorithm through Deep Neural network and calculating the same error rate that failed face certification. The result of proposed paper shows that the proposed system using deep learning and joint bayesian algorithms showed the equal error rate of 1.2%, and have a good performance compared to previous approach.