• 제목/요약/키워드: 검증 시스템

검색결과 12,936건 처리시간 0.042초

생태적 수질정화시설로서 댐 저수지 인공습지의 구조 적정성 평가방안 (A Study on Evaluation Method for Structural Suitability of Constructed Wetlands in Dam Reservoirs as an Ecological Water Purification System)

  • 반권수
    • 한국조경학회지
    • /
    • 제50권2호
    • /
    • pp.23-40
    • /
    • 2022
  • 유역 오염원의 생태적 정화를 위해 전국적으로 댐 저수지 내 인공습지를 많이 설치하여 운영 중이나 노후화와 효율 저하 문제가 지속적으로 제기되고 있으며 실효성 있는 관리 개선을 위해 우선적으로 구조적 적정성에 대한 객관적 평가가 필요하다. 본 연구에서는 15개 댐의 39개 인공습지를 대상으로 하였으며 문헌조사, FGI 등을 통해 물리적, 식생 구조를 고려한 입지 적정성, 유량공급 시스템, 수심, 유로 길이 대 폭비, 경사도, 식재 종수, 피복도, 식생 건전성 등 8개 평가항목을 도출 후 설문, AHP 분석을 통해 산정한 가중치를 적용하여 평가기준을 제시하였다. 인공습지 구조에 대한 평가결과, 전체 평가점수는 평균 80.8점이었으며 '양호(91~100점)' 등급은 10개소, '보통(71~90점)' 등급은 22개소, '미흡(70점 이하)' 등급은 7개소로 확인되었다. 물리적 구조의 평가점수는 만점 62.4점 중 평균 52.6점으로 '양호' 등급은 14개소, '보통' 등급은 21개소, '미흡' 등급은 4개소로 확인되었다. 입지 적정성의 평가점수는 만점 20.2점 중 평균 18.9점으로 대부분의 인공습지에서 양호한 수준이었으나 유량공급 시스템, 수심, 길이 대 폭비, 유로 경사도는 50% 이상의 인공습지에서 '보통' 이하 등급으로 평가되어 습지 내 안정적인 유량 공급, 흐름 향상을 위해 전반적인 구조 개선이 필요한 것으로 나타났다. 식재 수종, 식생 피복도, 식생 건전성 등 식생 구조 항목의 평가점수는 만점 37.6점 중 평균 28.2점으로 '양호' 등급은 6개소, '보통' 등급은 18개소, '미흡' 등급은 15개소로 약 84%가 '보통' 이하 등급으로 확인되었다. 물리적 구조 평가점수와 식생 구조 평가점수의 Spearman 상관계수를 분석한 결과, 유의미한 상관관계가 있었으며(r = 0.728, p < 0.001), 각 세부 평가인자들 간에도 영향을 미치는 것으로 나타났다. 인공습지 6개소의 현장 사례 검증 결과 평가결과의 적정성을 확인할 수 있었고 입지, 유량 공급, 습지의 형태 등이 습지의 효율과 운영에 큰 영향을 미치고 있는 것으로 나타났다. 본 연구를 통해 자연기반 해법으로서 댐 저수지 내 인공습지 전반의 구조적 취약 요소를 도출하고 향후 인공습지별 관리개선을 위한 유형과 실천적인 대안을 마련하여 인공습지의 효용성을 높이고 다양한 환경적 기능을 증진하는데 기여할 수 있을 것이다.

차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구 (Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis)

  • 박혜진;최재석;조상구
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.121-142
    • /
    • 2023
  • 수입식품의 수입 건수와 수입 중량이 꾸준히 증가함에 따라 식품안전사고 방지를 위한 수입식품의 안전관리가 더욱 중요해지고 있다. 식품의약품안전처는 통관단계의 수입검사와 더불어 통관 전 단계인 해외제조업소에 대한 현지실사를 시행하고 있지만 시간과 비용이 많이 소요되고 한정된 자원 등의 제약으로 데이터 기반의 수입식품 안전관리 방안이 필요한 실정이다. 본 연구에서는 현지실사 전 부적합이 예상되는 업체를 사전에 선별하는 기계학습 예측 모형을 마련하여 현지실사의 효율성을 높이고자 하였다. 이를 위해 통합식품안전정보망에 수집된 총 303,272건의 해외제조가공업소 기본정보와 2019년도부터 2022년 4월까지의 현지실사 점검정보 데이터 1,689건을 수집하였다. 해외제조가공업소의 데이터 전처리 후 해외 제조업소_코드를 활용하여 현지실사 대상 데이터만 추출하였고, 총 1,689건의 데이터와 103개의 변수로 구성되었다. 103개의 변수를 테일유(Theil-U) 지표를 기준으로 '0'인 변수들을 제거하였고, 다중대응분석(Multiple Correspondence Analysis)을 적용해 축소 후 최종적으로 49개의 특성변수를 도출하였다. 서로 다른 8개의 모델을 생성하고, 모델 학습 과정에서는 5겹 교차검증으로 과적합을 방지하고, 하이퍼파라미터를 조정하여 비교 평가하였다. 현지실사 대상업체 선별의 연구목적은 부적합 업체를 부적합이라고 판정하는 확률인 검측률(recall)을 최대화하는 것이다. 머신러닝의 다양한 알고리즘을 적용한 결과 Recall_macro, AUROC, Average PR, F1-score, 균형정확도(Balanced Accuracy)가 가장 높은 랜덤포레스트(Random Forest)모델이 가장 우수한 모형으로 평가되었다. 마지막으로 모델에 의해서 평가된 개별 인스턴스의 부적합 업체 선정 근거를 제시하기 위해 SHAP(Shapley Additive exPlanations)을 적용하고 현지실사 업체 선정 시스템에의 적용 가능성을 제시하였다. 본 연구결과를 바탕으로 데이터에 기반한 과학적 위험관리 모델을 통해 수입식품 관리체계의 구축으로 인력·예산 등 한정된 자원의 효율적 운영방안 마련에 기여하길 기대한다.

금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용 (Deep Learning OCR based document processing platform and its application in financial domain)

  • 김동영;김두형;곽명성;손현수;손동원;임민기;신예지;이현정;박찬동;김미향;최동원
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.143-174
    • /
    • 2023
  • 인공지능의 발전과 함께 딥러닝을 활용한 인공지능 광학문자인식 기법 (Artificial Intelligence powered Optical Character Recognition, AI-OCR) 의 등장은 기존의 이미지 처리 기반 OCR 기술의 한계를 넘어 다양한 형태의 이미지로부터 여러 언어를 높은 정확도로 읽어낼 수 있는 모델로 발전하였다. 특히, AI-OCR은 인력을 통해 대량의 다양한 서류 처리 업무를 수행하는 금융업에 있어 그 활용 잠재력이 크다. 본 연구에서는 금융권내 활용을 위한 AI-OCR 모델의 구성과 설계를 제시하고, 이를 효율적으로 적용하기 위한 플랫폼 구축 및 활용 사례에 대해 논한다. 금융권 특화 딥러닝 모델을 만듦에 있어 금융 도메인 데이터 사용은 필수적이나, 개인정보보호법 이하 실 데이터의 사용이 불가하다. 이에 본 연구에서는 딥러닝 기반 데이터 생성 모델을 개발하였고, 이를 활용하여 AI-OCR 모델 학습을 진행하였다. 다양한 서류 처리에 있어 유연한 데이터 처리를 위해 단계적 구성의 AI-OCR 모델들을 제안하며, 이는 이미지 전처리 모델, 문자 탐지 모델, 문자 인식 모델, 문자 정렬 모델 및 언어 처리 모델의 선택적, 단계적 사용을 포함한다. AI-OCR 모델의 배포를 위해 온프레미스(On-Premise) 및 프라이빗 클라우드(Private Cloud) 내 GPU 컴퓨팅 클러스터를 구성하고, Hybrid GPU Cluster 내 컨테이너 오케스트레이션을 통한 고효율, 고가용 AI-OCR 플랫폼 구축하여 다양한 업무 및 채널에 적용하였다. 본 연구를 통해 금융 특화 AI-OCR 모델 및 플랫폼을 구축하여 금융권 서류 처리 업무인 문서 분류, 문서 검증 및 입력 보조 시스템으로의 활용을 통해 업무 효율 및 편의성 증대를 확인하였다.

국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구 (Benchmark Test Study of Localized Digital Streamer System)

  • 신정균;하지호;서갑석;김영준;강년건;최종규;조동우;이한희;김성필
    • 지구물리와물리탐사
    • /
    • 제26권2호
    • /
    • pp.52-61
    • /
    • 2023
  • 육지와 인접한 연안, 그리고 천부 구조의 특성을 정밀하게 규명하기 위하여 높은 주파수 대역(80 Hz~1 kHz)의 음원을 활용하여 3.125 m 수준의 공간 해상도를 도출하는 초고해상 탄성파 탐사의 활용범위가 증가하고 있다. 디지털 스트리머 시스템은 고품질의 초고해상 탄성파 자료를 획득하기 위한 필수 모듈이며 도입 비용의 절감, 유지보수 기간의 단축 등을 위하여 국산화 연구가 이루어졌다. 개발된 국산화 스트리머에 대한 기본적인 성능 검증, 현장 운용성 검토 등은 해당 연구개발 과정에서 이루어졌으나 기존에 활용되는 벤치마크 모델과의 비교분석 연구는 수행되지 않았다. 본 연구에서는 국산화 스트리머와 벤치마크 모델을 활용해 동시에 자료를 취득하여 자료의 특성을 분석하였다. 이를 위하여 한국지질자원연구원 탐해2호와 부대장비 등을 활용한 2차원 탄성파 탐사자료를 취득하고 다양한 측면에서의 분석이 이루어졌다. 국산화 스트리머에서 취득된 자료는 벤치마크 모델에서 취득된 자료와 주파수 대역별 민감도 차이가 있었으나, 음원의 중심 주파수 대역을 고려한 범위에서는 매우 높은 수준의 유사성을 가지고 있다. 하지만, 60 Hz 이하의 낮은 주파수 대역에서는 벤치마크 모델 대비 낮은 신호대잡음비를 나타내었으며 이는 클러스터 에어건 등 낮은 주파수 대역의 음원을 활용한 자료취득에서는 품질을 저해하는 요소로 작용할 것이다. 이러한 차이를 발생시키는 원인은 세 가지(1. 스트리머 내부 발생 잡음, 2. 스트리머 예인 진동, 3. 아날로그 필터 컷 오프 주파수 대역)가 발굴되었으며 향후 제작되는 국산화 스트리머에서는 이에 대한 개선을 반영하고자 한다.

언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구 (A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5)

  • 오성종;김달주;이용창
    • 지적과 국토정보
    • /
    • 제52권2호
    • /
    • pp.171-187
    • /
    • 2022
  • 최근, 코로나 바이러스 감염증으로 인해 발생한 팬데믹의 영향으로 비대면 서비스에 대한 수요와 발전이 급속도로 진행되고 있는 가운데 중심에 있는 메타버스(Metaverse)에 대한 이목이 집중되고 있다. 가상과 현실을 초월하는 세계를 의미하는 메타버스는 4차 산업혁명 시대에 접어들어 다양한 센싱기술과 3D 재현기술이 융합되어 사용자에게 쉽고 빠르게 다양한 정보를 제공하고 서비스가 가능하다. 특히, 이 가운데 고해상도의 영상촬영이 가능한 무인항공기(UAV) 및 정밀도 높은 LiDAR 센서와 같은 융복합센서의 소형화 및 경제성 증가로 인해 높은 재현도 및 정확도를 가진 3D 공간정보를 획득하여 현실의 쌍둥이를 만들어 시뮬레이션하는 디지털 트윈(Digital-Twin)에 대한 연구가 활발히 진행되고 있다. 또한, 컴퓨터 그래픽 분야의 게임엔진(Game engine)이 강력한 3D 그래픽 재현 및 역학적 연산을 바탕으로 한 시뮬레이션 등이 확장되어 메타버스 엔진으로 발전하고 있다. 본 연구는 무인항공시스템(UAS)과 LiDAR 센서를 융합하여 획득한 정확도 높은 3D 공간정보 데이터를 최근 발표된 메타버스 엔진인 언리얼 엔진을 활용하여 실세계 좌표기반 현실을 반영한 거울세계 형태의 메타버스를 구축하였다. 이후, 다양한 공공데이터를 기반으로 사용자를 위한 공간정보 컨텐츠 및 시뮬레이션을 구축하여 재현 정확도를 검증하고, 이를 통해 보다 실감나고 공간정보 활용성이 높은 메타버스 구축에 대하여 고찰하였다. 또한, 언리얼 엔진을 통해 사용자가 직관적이고 쉽게 접근할 수 있는 메타버스를 구축할 경우 재현도 높은 좌표기반의 3D 공간정보를 통해 다양한 컨텐츠 활용성과 효용성을 확인할 수 있었다.

프랜차이즈 분쟁사례 분석을 통한 분쟁의 유형과 해결에 관한 연구 (A Study on the Types of Dispute and its Solution through the Analysis on the Disputes Case of Franchise)

  • 김규원;이재한;임현철
    • 한국프랜차이즈경영연구
    • /
    • 제2권1호
    • /
    • pp.173-199
    • /
    • 2011
  • 프랜차이즈 시스템에서 가맹점사업자는 가맹본부가 제공하는 영업노하우나 경영지원 등 포괄적 시스템에 의존할 수밖에 없고, 가맹본부는 판매나 경영방식을 통해서 가맹점사업자를 통제하거나 원조하기 때문에 당사자 간에 '경제력'이나 '정보력' 등에 있어서 대등한 관계에서 출발하지 않는다. 이로 인하여 가맹본부가 필요 이상으로 가맹점사업자의 활동을 구속·제한하는 불공정한 거래관계가 발생할 가능성이 클 뿐만 아니라, 가맹사업거래의 외관을 가장한 사기성 거래를 하려는 자들에 의한 부작용이 초래되어 가맹사업의 발전 및 국민경제의 발전을 저해하는 요인으로 작용하고 있다. 따라서 본 연구에서는 분쟁조정협의회에 신청된 분쟁사례를 중심으로 가맹본부와 가맹점사업자간의 분쟁원인과 문제점을 파악하여 가맹사업 분야에서 불공정한 거래관행을 예방하고, 가맹점 모집과정의 투명성과 가맹사업 거래과정의 공정성을 확보하기 위한 방안을 모색해 보고자 한다. 사례분석 결과 첫째, 가맹본부의 정확한 정보공개서 제공과 가맹사업자의 확실한 이해를 통한 가맹계약이 이루어져야 한다. 둘째, 가맹본부의 일정 기간이 경과된 직영점 운영 경험과 상권에 따른 운영 노하우 및 정확한 데이터 분석과 검증을 통한 가맹점사업자의 모집이 필요하다. 셋째, 가맹계약 시 가맹점 영업권역은 거리가 문제가 아니라 상권을 제대로 파악하여 가맹본부와 가맹점주가 함께 실사하여 확실한 영업지역을 표시하여 계약 하여야한다. 넷째, 가맹사업은 계약이 매우 중요하다. 그러므로 가능한 분쟁가능성을 예상하여 계약서에 규정해 놓을 수 있다면 분쟁을 줄일 수 있을 것이다. 다섯째, 정부의 가맹사업 및 분쟁조정에 대한 좀 더 현실적인 대안 마련과 분쟁에 대한 원인을 보다 세밀히 파악하여 가맹본부와 가맹점사업자간의 권익보호와 분쟁방지에 노력을 보다 많은 투자와 관심이 필요하다.

실데이터 기반 능동 소나 신호 합성 방법론 (Real data-based active sonar signal synthesis method)

  • 김윤수;김주호;석종원;홍정표
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.9-18
    • /
    • 2024
  • 최근 수중표적의 저소음화와 해상교통량의 증가로 인한 주변 소음의 증가로 능동 소나 시스템의 중요성이 증대되고 있다. 하지만 신호의 다중 경로를 통한 전파, 다양한 클러터와 주변 소음 및 잔향 등으로 인한 반향신호의 낮은 신호대잡음비는 능동 소나를 통한 수중 표적 식별을 어렵게 만든다. 최근 수중 표적 식별 시스템의 성능을 향상 시키기 위해 머신러닝 혹은 딥러닝과 같은 데이터 기반의 방법을 적용시키려는 시도가 있지만, 소나 데이터셋의 특성 상 훈련에 충분한 데이터를 모으는 것이 어렵다. 부족한 능동 소나 데이터를 보완하기 위해 수학적 모델링에 기반한 방법이 주로 활용되어오고 있다. 그러나 수학적 모델링에 기반한 방법론은 복잡한 수중 현상을 정확하게 모의하는 데에는 한계가 있다. 따라서 본 논문에서는 심층 신경망 기반의 소나 신호 합성 기법을 제안한다. 제안하는 방법은 인공지능 모델을 소나 신호 합성 분야에 적용하기 위해, 음성 합성 분야에서 주로 사용되는 타코트론 모델의 주요 모듈인 주의도 기반의 인코더 및 디코더를 소나 신호에 적절하게 수정하였다. 실제 해상 환경에 모의 표적기를 배치해 수집한 데이터셋을 사용하여 제안하는 모델을 훈련시킴으로써 보다 실제 신호와 유사한 신호를 합성해낼 수 있게 된다. 제안된 방법의 성능을 검증하기 위해, 합성된 음파 신호의 스펙트럼을 직접 분석을 진행하여 비교하였으며, 이를 바탕으로 오디오 품질 인지적 평가(Perceptual Quality of Audio Quality, PEAQ)인지적 성능 검사를 실시하여 총 4개의 서로 다른 환경에서 생성된 반사 신호들에 대해 원본과 비교해 그 차이가 최소 -2.3이내의 높은 성적을 보여주었다. 이는 본 논문에서 제안한 방법으로 생성한 능동 소나 신호가 보다 실제 신호에 근사한다는 것을 입증한다.

딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석 (Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning)

  • 김나영;윤예린;최재완;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.351-361
    • /
    • 2024
  • 위성영상은 구름, 구름 그림자, 지형 그림자 등을 포함한 다양한 요소를 포함하고 있으며, 이러한 요소들을 정확히 식별하고 제거하는 것은 원격 탐사 분야에서 위성영상의 신뢰성을 유지하기 위해 필수적이다. 이를 위해 Landsat-8, Sentinel-2, Compact Advanced Satellite 500-1 (CAS500-1)과 같은 위성들은 분석준비자료(Analysis Ready Data)의 일환으로 영상과 함께 사용가능한 데이터 마스크(Usable Data Mask, UDM)를 제공하고 있으며, UDM 데이터의 정확한 구축을 위해 구름 및 구름 그림자 탐지가 필수적이다. 기존의 구름 및 구름 그림자 탐지 기법은 임계값 기반 기법과 인공지능 기반 기법으로 나뉘며, 최근에는 많은 양의 데이터를 처리하는 데 유리한 딥러닝 네트워크를 활용한 인공지능 기법이 많이 사용되고 있다. 본 연구에서는 오픈소스 데이터 셋을 통해 훈련된 딥러닝 네트워크 기반 구름 및 구름 그림자 탐지를 통해 고해상도 위성영상의 UDM 구축 가능성을 분석하고자 하였다. 딥러닝 네트워크의 성능을 검증하기 위해 Landsat-8, Sentinel-2, CAS500-1 위성영상과 함께 제공된 기구축된 UDM 데이터와 딥러닝 네트워크가 생성한 탐지 결과 간의 유사성을 분석하였다. 그 결과, 딥러닝 네트워크가 생성한 탐지 결과는 높은 정확도를 나타냈다. 또한 UDM을 제공하지 않는 고해상도 위성영상인 KOMPSAT-3/3A 영상에 적용하였다. 실험 결과, 딥러닝 네트워크를 통하여 고해상도 위성영상 내에 존재하는 구름 및 구름 그림자를 효과적으로 탐지한 것을 확인하였다. 이를 통해 고해상도 위성영상에서도 딥러닝 네트워크를 사용하여 UDM 데이터를 구축할 수 있는 가능성을 확인하였다.

지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로 (An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model)

  • 이형주;정누리;양성병
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.75-100
    • /
    • 2018
  • 최근 웹툰, 음원, 동영상, 게임, 교육, 앱 등 많은 콘텐츠 기업에서 콘텐츠 유료화 정책을 추진하고 있으나, 무료 콘텐츠에 익숙한 독자들의 문화적 관성이 온라인 콘텐츠의 유료화 전환에 많은 어려움을 주고 있다. 특히 온라인 뉴스 콘텐츠는 포털 사이트를 통해 무료로 배포되고 있어 유료화에 대한 독자들의 거부감이 다른 온라인 콘텐츠 보다 더욱 심한 실정이다. 이러한 문제 해결을 위해 학계 및 산업계에서 온라인 콘텐츠의 유료화 방안에 대한 연구가 다양한 차원에서 진행되었다. 최근에는 일부 온라인 뉴스 매체를 중심으로 독자들이 자발적으로 마음에 드는 뉴스 콘텐츠에 대해 원하는 만큼의 구독료를 지불하게 하는 Pay-What-You-Want (PWYW) 지불모델을 적용하는 시도가 이뤄지고 있다. 이에 본 연구는 PWYW 모델의 성공적인 정착을 위한 선결요인으로 독자의 자발적 독자구독료 지불행위에 영향을 미치는 온라인 뉴스 콘텐츠의 체계적 속성을 도출하고, 각 속성 및 하위 속성의 상대적 중요도를 비교 분석하였다. 좀 더 구체적으로, 선행연구 분석을 통해 기사제목 유형, 기사 이미지 자극성, 기사 가독성, 기사 유형, 기사 지배적 정서, 기사 내용-이미지 유사성 등 총 여섯 가지의 온라인 뉴스 콘텐츠의 체계적 속성을 도출하였으며, 내용분석(content analysis)을 통해 각 기사의 속성값을 측정하고 이를 기반으로 컨조인트 분석(conjoint analysis)을 실시하여 속성 간 상대적 중요도를 계산 및 검증하였다. PWYW 모델이 적용된 온라인 뉴스 콘텐츠 379개에 대한 컨조인트 분석 결과, 기사 가독성, 기사 내용-이미지 유사성, 기사제목 유형 등의 순으로 자발적 독자구독료에 큰 영향을 주는 것으로 분석된 반면, 기사 유형, 기사 지배적 정서, 기사 이미지 자극성 등은 상대적으로 낮은 중요도를 보이는 것으로 조사되었다. 본 연구는 내용분석과 컨조인트 분석을 동시에 실시하여 온라인 뉴스 콘텐츠에 대한 자발적 지불의도에 영향을 미치는 체계적 요인을 도출하고, 그 상대적 중요도까지 살펴보았다는 점에서 학술적 의의가 있으며, 온라인 뉴스 콘텐츠 제작자 및 사이트 운영자들로 하여금 독자들의 자발적 지불을 유도할 수 있는 가이드라인을 제시하였다는 점에서 그 실무적 의의가 있다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.