• Title/Summary/Keyword: 검증 소프트웨어

Search Result 2,336, Processing Time 0.029 seconds

A tool development for forced striation and delineation of river network from digital elevation model based on ModelBuilder (모델빌더 기반 하천망의 DEM 각인 및 추출 툴 개발)

  • Choi, Seungsoo;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.515-529
    • /
    • 2019
  • Geospatial information for river network and watershed boundary have played a fundamental roles in terms of river management, planning and design, hydrological and hydraulic analysis. Irrespective of their importance, the lack of punctual update and improper maintenance in currently available river-related geospatial information systems has revealed inconsistency issues between individual systems and spatial inaccuracy with regard to reflecting dynamically transferring riverine geography. Given that digital elevation models (DEMs) of high spatial resolution enabling to reproduce precise river network are only available adjacent to national rivers, DEMs with poor spatial resolution lead to generate unreliable river network information and thereby reduce their extensible applicabilities. This study first of all evaluated published spatial information available in Korea with respect to their spatial accuracy and consistency, and also provides a methodology and tool to modify existing low resolution of DEMs by means of striation of conventional or digitized river network to replicate input river network in various degree of further delineation. The tool named FSND was designed to be operated in ArcGIS ModelBuilder which ensures to automatically simulate river network striation to DEMs and delineation with different flow accumulation threshold. The FNSD was successfully validated in Seom River basin to identify its replication of given river network manually digitized based on recent aerial photograph in conjunction with a DEM with 30 meter spatial resolution. With the derived accuracy of reproducibility, substantiation of a various order of river network and watershed boundary from the striated DEM posed tangible possibility for highly extending DEMs with low resolution to be capable of producing reliable riverine spatial information subsequently.

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard (제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델)

  • Yun, Seongjin;Kim, Hanjin;Shin, Hyeonyeop;Chin, Hoe Seung;Kim, Won-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.41-56
    • /
    • 2019
  • Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

Translation of Korean Object Case Markers to Mongolian's Suffixes (한국어 목적격조사의 몽골어 격 어미 번역)

  • Setgelkhuu, Khulan;Shin, Joon Choul;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • Machine translation (MT) system, especially Korean-Mongolian MT system, has recently attracted much attention due to its necessary for the globalization generation. Korean and Mongolian have the same sentence structure SOV and the arbitrarily changing of their words order does not change the meaning of sentences due to postpositional particles. The particles that are attached behind words to indicate their grammatical relationship to the clause or make them more specific in meaning. Hence, the particles play an important role in the translation between Korean and Mongolian. However, one Korean particle can be translated into several Mongolian particles. This is a major issue of the Korean-Mongolian MT systems. In this paper, to address this issue, we propose a method to use the combination of UTagger and a Korean-Mongolian particles table. UTagger is a system that can analyze morphologies, tag POS, and disambiguate homographs for Korean texts. The Korean-Mongolian particles table was manually constructed for matching Korean particles with those of Mongolian. The experiment on the test set extracted from the National Institute of Korean Language's Korean-Mongolian Learner's Dictionary shows that our method achieved the accuracy of 88.38% and it improved the result of using only UTagger by 41.48%.

Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙단면 에코필라 사방댐의 비선형 충돌해석)

  • Kim, Hyun-Gi;Kim, Bum-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.430-439
    • /
    • 2019
  • In this study, a nonlinear impact analysis was performed to evaluate the safety and damage of an eco-pillar debris barrier with a hollow cross-section, which was proposed to improve constructability and economic efficiency. The construction of concrete eco-pillar debris barriers has increased recently. However, there are no design standards concerning debris barriers in Korea, and it is difficult to find a study on performance evaluations in extreme environments. Thus, an analysis of an eco-pillar debris barrier was done using the rock impact speed, which was estimated from the debris flow velocity. The diameters of rocks were determined by ETAG 27. The impact position, angles, and rock diameter were considered as variables. A concrete nonlinear material model was applied, and the estimation of damage was done by ABAQUS software. As a result, the damage ratio was found to be less than 1.0 at rock diameters of 0.3 m and 0.5 m, but it was 1.39 when the diameter was 0.7 m. This study could be used as basic data on impact force in the design of the cross section of an eco-pillar debris barrier.

Verification of the Reliability of the Numerical Analysis for the Crash Impact Test of Rotorcraft Fuel Tank (회전익항공기용 연료탱크 충돌충격시험에 대한 수치해석 신뢰성 검증)

  • Kim, Sungchan;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.918-923
    • /
    • 2018
  • The main function of a fuel tank is to store fuel. On the other hand, the structural soundness of the fuel tank is related directly to the survival of the crew in an emergency situation, such as an aircraft crash, and the relevant performance is demonstrated by a crash impact test. Because crash impact tests have a high risk of failure due to the high impact loads, various efforts have been made to minimize the possibility of trial and error in the actual test at the beginning of the design. Numerical analysis performed before the actual test is a part of such efforts. For the results of numerical analysis to be reflected in the design, however, the reliability of numerical analysis needs to be ensured. In this study, the results of numerical analysis and actual test data were compared to ensure the reliability of numerical analysis for the crash impact test of a rotorcraft fuel tank. For the numerical analysis of a crash impact test, LS-DYNA, crash analysis software, was used and the ALE (arbitrary Lagrangian Eulerian) technique was applied as the analysis method. To obtain actual test data, strain gages were installed on the metal fittings of the fuel tank and linked to the data acquisition equipment. The strain and stress of the fuel tank fitting were calculated by numerical analysis. The reliability of the numerical analysis was enhanced by assessing the error between the strain measurement of the upper fitting obtained from an actual fuel tank and the strain calculated from numerical analysis.

An Empirical Analysis on the Operating System Update Decision Factors according to Age and Gender (연령과 성별에 따른 운영체제 업데이트 실시여부 실증분석)

  • Kim, Sunok;Lee, Mina
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.3117-3126
    • /
    • 2018
  • The operating system update is a basic step to maintain a safe internet use environment. This study analyzed whether the implementation of the operating system update was related to gender and age group during the violation accident prevention act in relation to information protection on the internet, and tried to verify the validity of these factors by analyzing the influence of gender and age group. In this study, logistic regression analysis was conducted based on the information security survey data surveyed by the Korea Internet & Security Agency in 2016. As a result, gender and age were surveyed as factors related to the implementation of operating system updates. As a result of analyzing the impact on the implementation of operating system updates by gender, it is estimated that the odds are 0.419 times higher for women than for men. According to the analysis of the operating system update by age group based on the 50s, which is a vulnerable group of information, the result is that the odds are 13.266 times higher in the 20s than the 50s.

Algorithm to Search for the Original Song from a Cover Song Using Inflection Points of the Melody Line (멜로디 라인의 변곡점을 활용한 커버곡의 원곡 검색 알고리즘)

  • Lee, Bo Hyun;Kim, Myung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.195-200
    • /
    • 2021
  • Due to the development of video sharing platforms, the amount of video uploads is exploding. Such videos often include various types of music, among which cover songs are included. In order to protect the copyright of music, an algorithm to find the original song of the cover song is essential. However, it is not easy to find the original song because the cover song is a modification of the composition, speed and overall structure of the original song. So far, there is no known effective algorithm for searching the original song of the cover song. In this paper, we propose an algorithm for searching the original song of the cover song using the inflection points of the melody line. Inflection points represent the characteristic points of change in the melody sequence. The proposed algorithm compares the original song and the cover song using the sequence of inflection points for the representative phrase of the original song. Since the characteristics of the representative phrase are used, even if the cover song is a song made by modifying the overall composition of the song, the algorithm's search performance is excellent. Also, since the proposed algorithm uses only the features of the inflection point sequence, the memory usage is very low. The efficiency of the algorithm was verified through performance evaluation.

A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning (자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론)

  • Roh, Jeong-Min;Kim, Yongsung
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.52-62
    • /
    • 2021
  • Quality control is critical at manufacturing sites and is key to predicting the risk of quality defect before manufacturing. However, the reliability of manual quality control methods is affected by human and physical limitations because manufacturing processes vary across industries. These limitations become particularly obvious in domain areas with numerous manufacturing processes, such as the manufacture of major nuclear equipment. This study proposed a novel method for predicting the risk of quality defects by using natural language processing and machine learning. In this study, production data collected over 6 years at a factory that manufactures main equipment that is installed in nuclear power plants were used. In the preprocessing stage of text data, a mapping method was applied to the word dictionary so that domain knowledge could be appropriately reflected, and a hybrid algorithm, which combined n-gram, Term Frequency-Inverse Document Frequency, and Singular Value Decomposition, was constructed for sentence vectorization. Next, in the experiment to classify the risky processes resulting in poor quality, k-fold cross-validation was applied to categorize cases from Unigram to cumulative Trigram. Furthermore, for achieving objective experimental results, Naive Bayes and Support Vector Machine were used as classification algorithms and the maximum accuracy and F1-score of 0.7685 and 0.8641, respectively, were achieved. Thus, the proposed method is effective. The performance of the proposed method were compared and with votes of field engineers, and the results revealed that the proposed method outperformed field engineers. Thus, the method can be implemented for quality control at manufacturing sites.

A Node2Vec-Based Gene Expression Image Representation Method for Effectively Predicting Cancer Prognosis (암 예후를 효과적으로 예측하기 위한 Node2Vec 기반의 유전자 발현량 이미지 표현기법)

  • Choi, Jonghwan;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.397-402
    • /
    • 2019
  • Accurately predicting cancer prognosis to provide appropriate treatment strategies for patients is one of the critical challenges in bioinformatics. Many researches have suggested machine learning models to predict patients' outcomes based on their gene expression data. Gene expression data is high-dimensional numerical data containing about 17,000 genes, so traditional researches used feature selection or dimensionality reduction approaches to elevate the performance of prognostic prediction models. These approaches, however, have an issue of making it difficult for the predictive models to grasp any biological interaction between the selected genes because feature selection and model training stages are performed independently. In this paper, we propose a novel two-dimensional image formatting approach for gene expression data to achieve feature selection and prognostic prediction effectively. Node2Vec is exploited to integrate biological interaction network and gene expression data and a convolutional neural network learns the integrated two-dimensional gene expression image data and predicts cancer prognosis. We evaluated our proposed model through double cross-validation and confirmed superior prognostic prediction accuracy to traditional machine learning models based on raw gene expression data. As our proposed approach is able to improve prediction models without loss of information caused by feature selection steps, we expect this will contribute to development of personalized medicine.

Development of Noise and AI-based Pavement Condition Rating Evaluation System (소음도·인공지능 기반 포장상태등급 평가시스템 개발)

  • Han, Dae-Seok;Kim, Young-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study developed low-cost and high-efficiency pavement condition monitoring technology to produce the key information required for pavement management. A noise and artificial intelligence-based monitoring system was devised to compensate for the shortcomings of existing high-end equipment that relies on visual information and high-end sensors. From idea establishment to system development, functional definition, information flow, architecture design, and finally, on-site field evaluations were carried out. As a result, confidence in the high level of artificial intelligence evaluation was secured. In addition, hardware and software elements and well-organized guidelines on system utilization were developed. The on-site evaluation process confirmed that non-experts could easily and quickly investigate and visualized the data. The evaluation results could support the management works of road managers. Furthermore, it could improve the completeness of the technologies, such as prior discriminating techniques for external conditions that are not considered in AI learning, system simplification, and variable speed response techniques. This paper presents a new paradigm for pavement monitoring technology that has lasted since the 1960s.