• 제목/요약/키워드: 검증 소프트웨어

Search Result 2,336, Processing Time 0.033 seconds

Expiration Date Notification System Based on YOLO and OCR algorithms for Visually Impaired Person (YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템)

  • Kim, Min-Soo;Moon, Mi-Kyung;Han, Chang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1329-1338
    • /
    • 2021
  • There are rarely effective methods to help visually impaired people when they want to know the expiration date of products excepted to only Braille. In this study, we developed an expiration date notification system based on YOLO and OCR for visually impaired people. The handicapped people can automatically know the expiration date of a specific product by using our system without the help of a caregiver, fast and accurately. The proposed system is worked by four different steps: (1) identification of a target product by scanning its barcode; (2) segmentation of an image area with the expiration date using YOLO; (3) classification of the expiration date by OCR: (4) notification of the expiration date by TTS. Our system showed an average classification accuracy of about 86.00% when blindfolded subjects used the proposed system in real-time. This result validates that the proposed system can be potentially used for visually impaired people.

Deep Learning Based User Safety Profiling Using User Feature Information Modeling (딥러닝 기반 사용자 특징 정보 모델링을 통한 사용자 안전 프로파일링)

  • Kim, Kye-Kyung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • There is a need for an artificial intelligent technology that can reduce various types of safety accidents by analyzing the risk factors that cause safety accidents in industrial site. In this paper, user safety profiling methods are proposed that can prevent safety accidents in advance by specifying and modeling user information data related to safety accidents. User information data is classified into normal and abnormal conditions through deep learning based artificial intelligence analysis. As a result of verifying user safety profiling technology using more than 10 types of industrial field data, 93.6% of user safety profiling accuracy was obtained.

Searching association rules based on purchase history and usage-time of an item (콘텐츠 구매이력과 사용시간을 고려한 연관규칙탐색)

  • Lee, Bong-Kyu
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Various methods of differentiating and servicing digital content for individual users have been studied. Searching for association rules is a very useful way to discover individual preferences in digital content services. The Apriori algorithm is useful as an association rule extractor using frequent itemsets. However, the Apriori algorithm is not suitable for application to an actual content service because it considers only the reference count of each content. In this paper, we propose a new algorithm based on the Apriori that searches association rules by using purchase history and usage-time for each item. The proposed algorithm utilizes the usage time with the weight value according to purchase items. Thus, it is possible to extract the exact preference of the actual user. We implement the proposed algorithm and verify the performance through the actual data presented in the actual content service system.

Self-supervised Meta-learning for the Application of Federated Learning on the Medical Domain (연합학습의 의료분야 적용을 위한 자기지도 메타러닝)

  • Kong, Heesan;Kim, Kwangsu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.27-40
    • /
    • 2022
  • Medical AI, which has lately made significant advances, is playing a vital role, such as assisting clinicians with diagnosis and decision-making. The field of chest X-rays, in particular, is attracting a lot of attention since it is important for accessibility and identification of chest diseases, as well as the current COVID-19 pandemic. However, despite the vast amount of data, there remains a limit to developing an effective AI model due to a lack of labeled data. A research that used federated learning on chest X-ray data to lessen this difficulty has emerged, although it still has the following limitations. 1) It does not consider the problems that may occur in the Non-IID environment. 2) Even in the federated learning environment, there is still a shortage of labeled data of clients. We propose a method to solve the above problems by using the self-supervised learning model as a global model of federated learning. To that aim, we investigate a self-supervised learning methods suited for federated learning using chest X-ray data and demonstrate the benefits of adopting the self-supervised learning model for federated learning.

Implementation of Git's Commit Message Complex Classification Model for Software Maintenance

  • Choi, Ji-Hoon;Kim, Joon-Yong;Park, Seong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.131-138
    • /
    • 2022
  • Git's commit message is closely related to the project life cycle, and by this characteristic, it can greatly contribute to cost reduction and improvement of work efficiency by identifying risk factors and project status of project operation activities. Among these related fields, there are many studies that classify commit messages as types of software maintenance, and the maximum accuracy among the studies is 87%. In this paper, the purpose of using a solution using the commit classification model is to design and implement a complex classification model that combines several models to increase the accuracy of the previously published models and increase the reliability of the model. In this paper, a dataset was constructed by extracting automated labeling and source changes and trained using the DistillBERT model. As a result of verification, reliability was secured by obtaining an F1 score of 95%, which is 8% higher than the maximum of 87% reported in previous studies. Using the results of this study, it is expected that the reliability of the model will be increased and it will be possible to apply it to solutions such as software and project management.

Data Preprocessing Technique and Service Operation Architecture for Demand Forecasting of Electric Vehicle Charging Station (전기자동차 충전소 수요 예측 데이터 전처리 기법 및 서비스 운영 아키텍처)

  • Joongi Hong;Suntae Kim;Jeongah Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • Globally, the eco-friendly industry is developing due to the climate crisis. Electric vehicles are an eco-friendly industry that is attracting attention as it is expected to reduce carbon emissions by 30~70% or more compared to internal combustion engine vehicles. As electric vehicles become more popular, charging stations have become an important factor for purchasing electric vehicles. Recent research is using artificial intelligence to identify local demand for charging stations and select locations that can maximize economic impact. In this study, in order to contribute to the improvement of the performance of the electric vehicle charging station demand prediction model, nationwide data that can be used in the artificial intelligence model was defined and a pre-processing technique was proposed. In addition, a preprocessor, artificial intelligence model, and service web were implemented for real charging station demand prediction, and the value of data as a location selection factor was verified.

HSE Block : Automatic Optimization of the Number of Convolutional Layer Filters using SE Block (HSE Block : SE Block을 활용한 합성곱 신경망 필터 수 자동 최적화)

  • Tae-Wook Kim;Hyeon-Jin Jung;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.179-184
    • /
    • 2022
  • In this paper, we are going to study how we can automatically determine the number of convolutional filters for the optimal model without a search algorithm. This paper proposes HSE Block by connecting SE Block proposed in SENet to a convolutional neural network and connecting a convolutional neural network not learned at the bottom. An experiment was conducted to increase the number of filters by one per 3 epoch using two datasets for the HSEBlock model and to increase the number of filters by the value in the filter. Based on this experiment, the model was constructed with multi-layer HSE Block instead of layer HSE Block, and the experiment was carried out using a dataset that was more difficult to learn than the one used in the previous experiment. The effect of HSE Block was verified by conducting an experiment with the number of HSE Blocks set to 2, 3, 4, and 5 on a dataset that is more difficult to learn than before.

Relative Speed based Task Distribution Algorithm for Smart Device Cluster (스마트 디바이스로 구성된 클러스터를 위한 상대속도 기반 작업 분배 기법)

  • Lee, Jaehun;Kang, Sooyong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.3
    • /
    • pp.60-71
    • /
    • 2017
  • Smart devices such as smart phones, smart TVs, and smart pads have become essential devices in recent years. As the popularity and demand grows, the performance of smart devices is also getting better and users are dealing with a lot of things such as education and business using smart devices instead of desktop. However, smart devices that still have poor performance compared to desktop, even with improved performance, have difficulty running high performance applications due to limited resources. In this paper, we propose a load balancing algorithm applying the characteristics of smart devices to overcome the resource limitations of devices. in order to verify the algorithm, we implemented the algorithm after adding the distributed processing system service in Android platform. After constructing the cluster on the smart device, various experiments were conducted. Through the analysis of the test results, it is confirmed that the proposed algorithm efficiently improves the overall distributed processing performance by effectively aggregating different amounts of computing resources in heterogeneous smart devices.

Design and Implementation of a Non-Face-to-Face Oriented Location-Based Service Software (비대면 지향의 위치-기반 서비스 소프트웨어 설계 및 구현)

  • Park, Hyuk Gyu;Won, Dong Hyun;Shin, Kwang Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.580-581
    • /
    • 2021
  • There are various Location-Based Services(LBS) that apply GPS technology in mobile devices such as smart-phone and tablet. In this paper, we designed non-face-to-face oriented LBS software in the reality that non-face-to-face services are increasing due to COVID-19. The proposed model searches location information for trading goods or services and utilizes information identified in real time. The proposed scheduling and priority control algorithm provides efficient service allocations and simulation was performed based on web/app to verify this. While commercialized LBS platforms focus on used goods transactions, the designed method is different in that it provides non-face-to-face services and not-direct transactions between individuals. It provides a wide range of transactions and services to users such as small business owners and franchises.

  • PDF

A Study on Threat Detection Model using Cyber Strongholds (사이버 거점을 활용한 위협탐지모델 연구)

  • Inhwan Kim;Jiwon Kang;Hoonsang An;Byungkook Jeon
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • With the innovative development of ICT technology, hacking techniques of hackers are also evolving into sophisticated and intelligent hacking techniques. Threat detection research to counter these cyber threats was mainly conducted in a passive way through hacking damage investigation and analysis, but recently, the importance of cyber threat information collection and analysis is increasing. A bot-type automation program is a rather active method of extracting malicious code by visiting a website to collect threat information or detect threats. However, this method also has a limitation in that it cannot prevent hacking damage because it is a method to identify hacking damage because malicious code has already been distributed or after being hacked. Therefore, to overcome these limitations, we propose a model that detects actual threats by acquiring and analyzing threat information while identifying and managing cyber bases. This model is an active and proactive method of collecting threat information or detecting threats outside the boundary such as a firewall. We designed a model for detecting threats using cyber strongholds and validated them in the defense environment.