• 제목/요약/키워드: 건화

검색결과 156건 처리시간 0.021초

계층적 반복법을 이용한 비압축성 유동계산 (An Incompressible Flow Computation using a Hierarchical Iterative Method)

  • 김진환;정창률
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.216-221
    • /
    • 2004
  • In two dimensional incompressible flaws, a preconditioning technique called Hierarchical Iterative Procedure(HIP) has been implemented on a SUPG finite element formulation. By using the SUPG formulation, one can escape from the LBB constraint and hence achieve an equal order formulation. In this paper, we increased the order of interpolation up to cubic. The conjugate gradient squared(CGS) method is used for the outer iteration, and the HIP for the preconditioning for the incompressible Navier-Stokes equation. The hierarchical elements has been used to achieve a higher order accuracy in fluid flaw analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far. The numerical results by the present HIP for the lid driven cavity flaw showed the present procedure to be stable, very efficient and useful in flaw analyses in conjunction with hierarchical elements.

  • PDF

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR)

  • 이병우;박수일;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.177-184
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

  • PDF

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE FLOW)

  • 이병우;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.149-154
    • /
    • 2009
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flow. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. The results from the present solver have been in a fairly good agreement with the experimental data and other numerical results. After the code validation the strong side flow was applied to include the wake flow effect of the submarine.

  • PDF

예조건화 기법의 병렬화를 이용한 압축기 유동해석 (Computation of Compressor Flows Using Parallel Implementation of Preconditioning Method)

  • 이기수;최정열;김귀순
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.155-162
    • /
    • 2000
  • In this paper, preconditioning method is parallelized on fast-ethernet PC cluster. The algorithm is based on scaling the pressure terms in the momemtum equations and preconditioning the conservation equations to circumvent numerical difficulties at low Mach numbers. Parallelization is performed using a domain decomposition technique(DDT) and message passing between sub-domains are taken from the MPI library. The results are shown to have good convergence properties at all Mach number on the circular arc Bump and are capable of reasonable predicting two-dimensional turbulent flows on DCA compressor cascade.

  • PDF

Myrinet 환경에서 예조건화 Navier-Stokes 코드의 병렬처리 성능 (Parallel Performance of Preconditioned Navier-Stokes Code on Myrinet Environment)

  • 김명호;이기수;최정열;김귀순;김성룡;정인석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.149-154
    • /
    • 2001
  • Parallel performance of a Myrinet based PC-cluster was tested and compared with a conventional Fast-Ethernet system. A preconditioned Navier-Stokes code was parallelized with domain decomposition technique, and used for the parallel performance test. Speed-up ratio was examined as a major performance parameter depending on the number of processor and the network topology. As was expected, Myrinet system shows a superior parallel performance to the Fast-Ethernet system even with a single network adpater for a dual processor SMP machine. A test for the dependency on problem size also shows that network communication speed is a crucial factor for parallelized computational fluid dynamics analysis and the Myrinet system is a plausible candidate for high performance parallel computing system.

  • PDF

계층적 반복과 수정 잔여치법에 의한 비압축성 유동 계산 (An Incompressible Flow Computation by a Hierarchical Iterative and a Modified Residual Method)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.57-65
    • /
    • 2004
  • The incompressible Navier-Stokes equations in two dimensions are stabilized by a modified residual method, and then discretized by hierarchical elements. The stabilization is necessary to escape from the Ladyzhenskaya-Babuska-Brezzi(LBB) constraint and hence to achieve an equal order formulation. To expedite a standard iterative method such as the conjugate gradient squared(CGS) method, a preconditioning technique called the Hierarchical Iterative Procedure(HIP) has been applied. In this paper, we increased the order of interpolation within an element up to cubic. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far The numerical results by the present HIP for the lid driven cavity flow and others showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

서로 다른 캐비테이션 모델을 이용한 실린더 주위의 캐비테이션 유동현상 전산해석 (NUMERICAL ANALYSIS OF CAVITATING FLOW PAST CYLINDER WITH THREE DIFFERENT CAVITATION MODELS)

  • 김승윤;박원규;정철민
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.60-66
    • /
    • 2011
  • Engineering interests of submerged bodies and turbomachinery has led researchers to study various cavitation models for decades. The governing equations used for the present work are the two-phase Navier-Stokes equations with homogeneous mixture model. The solver employed on implicit dual time preconditioning algorithm in curvilinear coordinates. Three different cavitation models were applied to two axisymmetric cylinders and compared with experiments. It is concluded that the Merkle's new cavitation model has successfully accounted for cavitating flows and well captured the re-entrant jet phenomenon over the 0-caliber cylinder.

예조건화 시간차분을 통한 화학반응유동의 효율적 계산 (A Preconditioned Time Method for Efficient Calculation of Reactive Flow)

  • 김성룡;정인석;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.219-230
    • /
    • 1999
  • The Equations of Chemical kinetics are very stiff, which forces the use of an implicit scheme. The problem of implicit scheme, however, is that the jacobian must be solved at each time step. In this paper, we examined the methodology that can be stable without full chemical jacobian, This method is derived by applying the different time steps to the chemical source term. And the lower triangular chemical jacobian is derived. This is called the preconditioned time differencing method and represents partial implicit method. We show that this method is more stable in chemical kinetics than the full implicit method and that this is more efficient in supersonic combustion problem than the full jacobian method with same accuracy.

  • PDF

후류중에 있는 수중운동체의 캐비테이션 유동 현상 및 유체력 변화 해석 코드 개발 (NUMERICAL CODE DEVELOPMENT OF THE MULTIPHASE FLOW AROUND AN UNDERWATER VEHICLE UNDER SUBMARINE WAKE.)

  • 박수일;하콩투;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.115-121
    • /
    • 2010
  • Cavitating flow is widely shown in many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work focuses on the numerical analysis of the multiphase flow around the underwater vehicle which was launched from a submarine. The governing equation is the Navier-Stokes equation with a homogeneous mixture mode. The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinate. For the code validation, the results from the present work are compared with the existing experimental and numerical results, and a reasonably good agrements are obtained. The multiphase flow around an underwater vehicle is simulated which includes submarine wake effects.

  • PDF

2차원 날개 주위의 지면효과에 대한 난류 유동장 해석 (TURBULENT FLOW SIMULATION ON THE GROUND EFFECT ABOUT A 2-DIMENSIONAL AIRFOIL)

  • 김윤식;이재은;신명수;강국진;권장혁
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.81-89
    • /
    • 2006
  • Two dimensional turbulent flow simulations on the low Mach number - high Reynolds number flow about the NACA 4412 airfoil are carried out as the airfoil approaches a ground. It has turned out that angle of attack between 2 and 8 degrees is recommended for the airfoil to utilize the benefit of ground effect. For the large angle of attack, the increment of lift due to the ground effect is faded away and negative aerodynamic effect such as destabilizing aspect in static longitudinal stability occurs and the separation point moves to forward as the airfoil approaches a ground.