• Title/Summary/Keyword: 건축공학실무

Search Result 49, Processing Time 0.026 seconds

Analysis of Safety Management Operations of Fire Risk Factors in Small-Scale Construction Sites (소규모 건설현장 화재 위험요인 안전관리 운영실태 분석)

  • Moon, Pil-Jae;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.775-785
    • /
    • 2022
  • By analyzing the operation status of fire safety management of small construction site workers, deriving problems, and suggesting improvement measures, this study was conducted to present practical basic data for their efficient use in the future, and the following conclusions were drawn. First, it was analyzed that small construction site workers are elderly in the age group of construction workers, have short construction skills, most of the jobs are working in the construction industry, and the employment type is non-regular workers. Second, the fire safety management improvement plan of small construction site workers is systematized, fire safety manager is deployed to manage fire risk, fire escape routes and emergency warning facilities are provided to inform all workers at the construction site. In addition, measures to reduce industrial accidents are needed through realistic evacuation training, fire VR training, and interesting educational programs.

Application of Linear Schedule Chart for Schedule Management of Linear Construction Project (선형시설물 공정관리 활용을 위한 선형공정표 활용 시스템 구축 방안)

  • Lee, Jaehee;Kang, Hyojeong;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.13-23
    • /
    • 2023
  • Unlike building construction projects, where the activity is repeatedly carried out in a limited area, civil engineering projects such as roads and railroads are carried out in a linear type in a horizontal working space over several tens of kilometers. Each activity is managed with a station number that has a unit of distance from the starting point to the end point. For this reason, since the work location information of the activity is a major management factor, the Gantt chart system that expresses only schedule information may have limitations. In this study, authors propose a method for constructing a linear schedule chart that can simultaneously express schedule information indicating the start and finish dates and location information indicating the start and end positions of each activity, and develop a system for generating a linear schedule chart. In the study, the coordinate axes of the linear schedule chart consisted of distance and date values on the X and Y axes, respectively, and each activity was expressed as a symbol that can infer the type of work to increase the visibility of the linear schedule chart compared to the simple bar chart method. The linear schedule chart generation system was reviewed for practical applicability by utilizing the actual schedule data of bridge structures in a railroad project.

Development of a Feasibility Evaluation Model for Apartment Remodeling with the Number of Households Increasing at the Preliminary Stage (노후공동주택 세대수증가형 리모델링 사업의 기획단계 사업성평가 모델 개발)

  • Koh, Won-kyung;Yoon, Jong-sik;Yu, Il-han;Shin, Dong-woo;Jung, Dae-woon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.22-33
    • /
    • 2019
  • The government has steadily revised and developed laws and systems for activating remodeling of apartments in response to the problems of aged apartments. However, despite such efforts, remodeling has yet to be activated. For many reasons, this study noted that there were no tools for reasonable profitability judgements and decision making in the preliminary stages of the remodeling project. Thus, the feasibility evaluation model was developed. Generally, the profitability judgements are made after the conceptual design. However, decisions to drive remodeling projects are made at the preliminary stage. So a feasibility evaluation model is required at the preliminary stage. Accordingly, In this study, a feasibility evaluation model was developed for determining preliminary stage profitability. Construction costs, business expenses, financial expenses, and generally sales revenue were calculated using the initial available information and remodeling variables derived through the existing cases. Through this process, we developed an algorithm that can give an overview of the return on investment. In addition, the preliminary stage feasibility evaluation model developed was applied to three cases to verify the applicability of the model. Although applied in three cases, the difference between the model's forecast and actual case values is less than 5%, which is considered highly applicable. If cases are expanded in the future, it will be a useful tool that can be used in actual work. The feasibility evaluation model developed in this study will support decision making by union members, and if the model is applied in different regions, it will be expected to help local governments to understand the size of possible remodeling projects.

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : II. Verification of Applicability (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : II. 적용성 검증)

  • Park, Chul-Soo;Mok, Young-Jin;Hwang, Seon-Keun;Park, In-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.57-66
    • /
    • 2009
  • In the preliminary investigation (Park et al., 2009), the use of compressional wave velocity and its measurement techniques were proposed as a new quality control measure for trackbed fills. The methodology follows exactly the same procedure as the density control, except the density being replaced by the compressional wave velocity involving consistently with resilient modulus of design stage. The specifications for the control also include field compaction water content of optimum moisture content ${\pm}2%$ as well as the compressional wave velocity. In this sequel paper, crosshole and resonant column tests were performed as well direct-arrival method and laboratory compressional wave measurements to verify the practical applicability of a methodology far the new quality control procedure based upon compressional wave velocity. The stress-modified crosshole results reasonably well agree with the direct-arrival values, and the resonant column test results also agree well with the field crosshole results. The compressional wave velocity turned out to be an excellent control measure for trackbed fills both in the theoretical and practical point of view.

A Study on the Improvement of the Design VE Process using VE Idea-DataBank System (설계 VE 프로세스 개선을 위한 VE Idea-DataBank System 구축에 관한 연구 - 한국도로공사 고속도로 건축공사를 대상으로 -)

  • Park, Heetaek;Park, Chansik;Jung, Wooseob
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • Construction value engineering(VE) is often performed in the form of a short term review of designs, rather than during a regular workshop with a standardized work plan, and its application method is limited. Thus, tasks are performed by applying the method in reverse depending on the VE results, and function analysis, a key VE method, is omitted or only applied for the sake of formality. In addition, it is hard to expect great results from VE because of insufficient time and budget allowed to perform VE and a lack of understanding of VE procedures and methods. In particular, the methods used to store and reuse the tremendous amount of ideas and information created during the process of VE implementation is not systematic. Even the Korea Expressway Corporation, which has produced relatively systematic VE performance compared to other institutions, has had the above-mentioned problems. Therefore, this study aims to improve existing VE processes and suggest a method to efficiently store and retrieve VE information by analyzing the limitations of construction VE practice and the characteristics of VE for highway facilities as part of improving design VE performance.

Mock-up Test of Improved Concrete Binders for Lightweight Foamed concrete (경량기포 콘크리트용 개량분체의 Mock-up 실험평가)

  • Choi, Sung-Yong;Jeong, Kwang-Bok;Kim, Gi-Cheol;Kim, Seong-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.853-856
    • /
    • 2008
  • Lightweight foamed concretes are mainly used in apartment building construction for building room floor insulation, sound proof and height difference adjustment, etc. However, existing lightweight foamed concretes have problems like volume reduction by foam removal and excessive crack occurrence, etc, and for compensation, they developed improved concrete binders for lightweight foamed concrete with special characteristics by adding admixture materials used in concrete manufacturing. Therefore, this study reviewed the possibility of its practical use by analyzing all the engineering characteristics after producing imitation member proposed as actual binders and piling lightweight foamed concrete as improved lightweight foamed concrete binder through prior study, the results are as follows. Plain in which various pulverulent materials are mixed showed about 230mm of flow value, satisfying the target flow value, and at 100mm member, about 4mm of settlement occurred, showing a settlement depth reduction effect double the OPC. On strength, OPC showed highest value, but the three levels all showed strengths above the specified value of KS standard 0.5 grade. From the analysis of drying shrinkage member crack, plain, about 0.1mm, was shown very excellent against drying shrinkage crack.

  • PDF

Seismic Performance-based Design using Computational Platform for Structural Design of Complex-shaped Tall Building (전산플랫폼을 이용한 비정형 초고층 건축물 성능기반 내진설계기술의 실무적용)

  • Lee, Dong-Hun;Cho, Chang-Hee;Youn, Wu-Seok;Kang, Dae-Eon;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • Complex-shaped tall building causes many structural challenges due to its structural characteristics regarding inclined members and complexed shape. This paper is aimed at development of design process using computational-platform which is effective design tool for responding frequent design changes, particularly as to overseas projects. StrAuto, a parametric structural modeling and optimizing system, provides the optimized alternatives according to design intent and realize a swift process converting a series of structural information necessary to nonlinear analytical models. The application of the process was to a 45-story hotel building in Ulanbator, Mongolia adopting shear wall and special moment frame with outrigger systems. To investigate the safety of lateral force resisting system against maximum considered earthquake(MCE), nonlinear response history analysis was conducted using StrAuto.

Evaluation and Modification of Tensile Properties of Carbon Fiber Reinforced Polymer(CFRP) as Brittle Material with Probability Distribution (확률분포를 이용한 취성재료 특성의 탄소섬유보강폴리머 인장물성평가 및 보정)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • Carbon Fiber Reinforced Polymers(CFRP) has widely utilized as a material for rehabilitation because of its light-weight, deformability and workability. Because CFRP is brittle material whereas steel is ductile, it is inappropriate to apply conventional design approach for steel reinforcement. For ductile material, the behavior of combined elements is on average of that of unit element due to the stress redistribution between elements after yielding. Therefore, the mean value of the stress of combined elements is equal to that of unit element and the standard variation is smaller. Therefore, although the design value can increase, it is used as constant value because it is conservative and practical approach. However, for brittle material, the behavior of combined elements is governed by the weaker element because no stress redistribution is expected. Therefore, both the mean value and standard variation of the stress of combined elements decreases. For this reason, the design value would decrease as the number of element increases although it is eventually converged. In this paper, in brittle material, it is verified that the combination of unit element with normal distribution results in combined element with weibull distribution, so the modifying equation of mechanical properties is proposed with respect to the area load applied.

Study on Tensile Properties of Carbon Fiber Reinforced Polymers (CFRP) Laminate with Strain Distribution (변형률 분포를 가진 탄소섬유복합체의 인장특성에 대한 연구)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.25-33
    • /
    • 2020
  • To investigate the relationship between strain distribution and tensile properties of brittle material, five types of tensile coupon of carbon fiber reinforced polymer (CFRP) modified the tab portion in order to have a strain distribution including S0, SD1, SD2, SV1, SV2 were tested. The ultimate stress and strain of SD2 and SV2 which was intended to have larger strain distribution were smaller than those of SD1 and SV1, that was more clearly shown in the test results of the symmetric coupons (SV series) than the asymmetric coupons (SD series). In addition, the ultimate stress and strain of most coupons with strain distribution in this study were decreased when compared to the control group with uniform strain. These results were analyzed in various ways through 1) the average of the strain values directly measured by the strain gages, 2) the converted strain calculated by dividing the total deformation by the effective length, and 3) the ultimate effective strain derived from both the elastic modulus and the ultimate load. The values measured by strain gage indicates response of the local region precisely, but it does not represent the response from whole section. However, the converted strain and effective strain can supplement disadvantage of gage because they represent the average response of whole section. In particular, the effective strain can provide rupture strain conservatively, which can be utilized in practice, when the value obtained by strain gage was not effective due to gage damage or abnormal gage readings near ultimate load. This value provides a value that can be used even when partial rupture has occurred and is reasonably useful for specimens with strain distribution.