• Title/Summary/Keyword: 건조 속도

Search Result 971, Processing Time 0.034 seconds

A Study on Hay Preparation Technology for Italian Ryegrass Using Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 이탈리안 라이그라스 건초 조제 기술 연구)

  • Jong Geun Kim;Young Sang Yu;Yan Fen Li;Li Li Wang;Hyun Rae Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.258-263
    • /
    • 2022
  • This experiment was conducted to confirm the possibility of manufacturing artificial Italian ryegrass hay using far-infrared rays in Korea. The machine used in this experiment was a far-infrared ray dryer capable of adjusting temperature, airflow, and far-infrared radiation, and was conducted on Italian ryegrass harvested in May. Conditions for drying were performed by selecting a total of nine conditions, and each condition was set to emission rate of 42 to 45%, and the internal temperature was set to 65℃. The speed of the air flow in the machine was 40-60 m/s, and the overall drying time was 30 minutes for 42% radiation, 25 minutes for 43% radiation, and 20 minutes for 45% radiation. The final dry matter content according to each drying condition was 88.5% on average, and the dry matter content suitable for hay was shown in the all treatment. Looking at the power consumption according to the drying conditions, the lowest was found in the treatment that dried for 20 minutes at 45% radiation. In the drying rate, there was no difference in drying conditions 1 to 5, but a significantly low tendency was shown in conditions 6 to 7. In terms of feed value, CP and IVDMD were higher than raw materials in most drying conditions, and ADF and NDF contents were low, and tended to be high in drying conditions 4, 7, and 8. Through the above results, it was judged that drying conditions 7 and 8 were the most advantageous when considering drying speed, power consumption, and quality.

A study on the Development of Automatic Drying System of Ginseng (인삼의 자동건조시스템 개발에 관한 연구)

  • Kang, Hyun-Ah;Chang, Kyu-Seob;Chang, Dong-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.764-768
    • /
    • 1993
  • This study was developed a computer-controlled automatic drying system. In order to control automatically the temperature, relative humidity weight of the sample, drying system with computer and connecting parts such as microcomputer, PC-Lab card, Op. Amp., and relay system were developed for controlling the heater, fan, humidifier and dehumidifier. Using this system, drying characteristic mechanism of ginseng were investigated. The increase of drying temperature decreased Hunter L value and increased a and b value. The hardness and shrinkage rate of white ginseng had a increasing tendency with the increase of drying temperature. Crude saponin content was not affected by drying temperature and relative humidity.

  • PDF

Combined Microwave-Convective Drying of Wood Veneer 1 : Drying Characteristics of Radiata Pine Veneer Grown in New Zealand (목재단판의 마이크로파-열풍 병용 건조 1: 뉴질랜드산 라디아타 소나무 단판의 건조특성)

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Combined microwave-convective drying of 2.4mm-thick radiata pine veneer grown in New Zealand was conducted to investigate drying characteristics. The veneers could be dried from 160% to 0% moisture content in 7.5 min by microwave drying combined with hot-air of 100℃. This drying rate is about three times higher than that of conventional convective drying with only hot air of 100℃. However there remained charred spots when too high microwave power was applied. Therefore investigations of the microwave-drying characteristics of veneer of various sizes and species are needed to determine the optimal drying conditions.

Comparison of Photosynthetic Responses in Heracleum moellendorffii and Aruncus dioicus var. Kamtschaticus in Relation to Atmosphere-Leaf Vapor Pressure Deficit (대기-엽 수증기압차(VPD)에 의한 어수리와 눈개승마의 광합성 반응 비교)

  • Lee, K.C.;Kwon, Y.H.;Lee, K.M.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • This study was conducted to investigate the effect of atmosphere-leaf vapor pressure deficit (VPD) in Heracleum moellendorffii and Aruncus dioicus var. kamtschaticus. The VPD was rapidly increased with increasing temperature and decreasing relative humidity. Taken as a whole, the stomatal transpiration reaction was slightly late with increasing of VPD. Maximum photosynthetic rate at high-VPD condition was 6.49 µmol CO2·m-2·s-1 in Heracleum moellendorffii Hance, which was a little lower than 5.57 µmol CO2·m-2·s-1 in Aruncus dioicus var. kamtschaticus, respectively. After 2 p.m, stomatal transpiration of Heracleum moellendorffii at the high VPD condition was rapidly decreased. The results indicated that physiological activities in Heracleum moellendorffii are more limited from high VPD conditions.

Drying Boards of Populus alba×P. glandulosa in Conventional, High-Temperature and Microwave-Vacuum Kilns (은사시나무 판재의 열기건조, 고온건조, 마이크로파-진공 건조)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • Flat-sawn 32 mm-thick boards of Populus alba×P. glandulosa, one of major plantation species in this country, were dried in conventional, high-temperature and microwave-vacuum (MW/V) kilns. The average green specific gravity of the specimens used in this study was 0.349±0.074. Their average green moisture contents of heartwoods and sapwoods were around 200% and 100%, respectively. From green to oven-dry they shrunk 2.4 and 7.3% in radial and tangential directions, respectively, and there was no discrepancy between heartwoods and sapwoods. It took 65, 35 and 22 hours to dry from green to 10% moisture content in conventional, high-temperature and MW/V kilns, respectively. A colorimetry study showed that the surface color of the specimens dried in a MW/V kiln was clearer and lighter than those in other kilns.

Model of Drying Stress Distribution in Disks End-wrapped in Korean Paper and Effects of End-wrappings on Prevention of Drying Defects for Vacuum Drying of Disks (한지(韓紙) 엔드래핑처리 원판(圓板)의 감압건조응력(減壓乾燥應力) 분포모형(分布模型) 및 엔드래핑스의 건조결함(乾燥缺陷) 예방효과(豫防效果))

  • Lee, Nam-Ho;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.31-63
    • /
    • 1991
  • It was proved that in conventional kiln drying of disks piling position in the kiln exerted a great influence on drying rates, and the larger the variation of disk diameter, the more undulating drying rates of disks. While in vacuum drying disks there was no influence on drying rates. By the end-wrapping treatments and the radial direction of disks tangential surface stresses in the core of disks were slightly compressive in three species. In control disks the drying stresses distributed into one step-style that compressive stresses in the pith side of 6cm from pith were larger than those in the bark side, while in the disks end-wrapped with Korean paper the drying stresses distributed uniformly, because flow rates of free water in disks had no difference between heart-and sap-wood by obstruction of evaporating water from surface of disks by end-wrapping with Korean paper. And end-wrapping with Korean paper considerably restrained those. Tangential differential shrinkage stresses developed the maximum tensile stress near the bark and with approaching the pith the stresses gradually reduced and changed into compressive stresses in near the pith. At the end of vacuum drying the maximum tangential tensile stresses of disks end-wrapped with Korean paper were smaller than those of control disks, and critical moisture contents causing the V-shaped crack of disks end-wrapped with Korean paper were lower than those of control disks because of the set by obstruction of evaporating water of end-wrapping with Korean paper. In the experiment of vacuum drying stress distribution the disks end-wrapped with Korean paper or aluminum foil in three species were free from V-shaped cracks and control disks were defected very slightly by V-shaped cracks. And also disks end-wrapped with Korean paper were free from heart checks in Alnus japonica and Juglans sinensis, and heart checks were occurred very slightly in others. Especially, not to speak of disks end-wrapped with Korean paper, vacuum drying of disks end-wrapped with aluminum foil prevented effectively drying defects, moreover drying times could be shortened, that is. Ginkgo biloba, Alnus japonica, and Juglans sinensis disks could be dried from green to in-use moisture content in 110 hours, 272 hours, and 407 hours, respectively.

  • PDF

An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials (다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석)

  • Kim, Hak-Sung;Jung, Young-Hoon;Mok, Young-Jin;Lee, Jin-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1037-1047
    • /
    • 2013
  • A systematic laboratory compaction testing was performed with the laboratory seismic measurements of the compacted specimens sampled from various compaction fills and was supplemented with in-situ seismic testing to investigate the effects of compaction energy on the elastic wave velocities of the railway roadbed materials. The both variances of the compressive and shear wave velocities with moisture content curve ($V_p$-w and $V_s$-w curves) are similar to the general trend of the density-moisture content curve(${\gamma}_d$-w curve). At the wet side of optimal moisture content (OMC), either $V_p$ or $V_s$ does not significantly increase, which is well reflecting the no gaining in density with the increasing compaction energy exceeding modified-D compaction effort. $V_p$ increases linearly with ${\gamma}_d$ at the dry side of OMC, while it does exponentially at the wet side. The in-situ wave velocities were found to be influenced by the level of confinement and $V_s$ was more sensitive to compaction energy than $V_p$.

Mass Transfer Characteristics in the Osmotic Dehydration Process of Carrots (당근의 삼투건조시 물질이동 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-393
    • /
    • 1995
  • Diffusion coefficients of moisture and solid, reaction rate constants of carotene destruction, and the fitness of drying models for moisture transfer were determined to study the characteristics of mass transfer during osmotic dehydration. Moisture loss and solid gain were increased with increase of temperature and concentration; temperature had higher osmotic effect than concentration. Diffusion coefficient showed similar trend with osmotic effect. Diffusion coefficients of solids were larger than those of moisture because the movement of solid was faster than that of moisture at the high temperature. Reaction rate constants were affected to the greater extent by concentration changes than by temperature changes. Arrhenius equation was applied to determine the effect of temperature on diffusion coefficients and reaction rate constants. Moisture diffusion required high activation energy in $20^{\circ}Brix$, while relatively low in $60^{\circ}Brix$. To predict the diffusion coefficients and reaction rate constants, a model was established by using the optimum functions of temperature and concentration. The model had high $R^2$ value when applied to diffusion coefficients, but low when applied to reaction rate constants. Quadratic drying model was most fittable to express moisture transfer during drying. In conclusion, moisture content of carrots could be predictable during the osmotic dehydration process, and thereby mass transfer characteristics could be determined by predicted moisture content and diffusion coefficient.

  • PDF

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.