• Title/Summary/Keyword: 건식필름

Search Result 13, Processing Time 0.027 seconds

Design and Fabrication of Metalized Film Capacitor for Power Electronics (전력전자용 건식 금속 증착 필름 커패시터 설계 및 제작)

  • Yoon, Jung-Rag;Kim, Young-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1285_1286
    • /
    • 2009
  • 본 논문에서는 지하철 인버터 회로에 사용 환경에 적합하면서 높은 과도 전압(dV/dt)에 견딜 수 있는 건식형 스너버용 커퍼시터를 설계 및 제작하여 특성을 검토하고자 한다. 필름 커패시터는 환경적 측면을 고려하여 에폭시 몰드형 건식형을 적용하였다. 증착 필름에 적용되는 금속은 Zn 전극에 비하여 Al 전극이 우수한 커패시터 특성을 나타내었으며 패턴의 경우에도 T-pattern에서 정전용량 및 손실의 변화율이 작게 나타났다. Al 금속전극에 wave-cut를 적용한 T - pattern 필름으로 DC 1650V, 12 uF, 정격전류 40 A의 커패시터를 제작하여 ESR 및 유전 손실이 적은 제품을 구현할 수 있으며 내구성 및 surge test 결과 신뢰성 규격을 만족하였다.

  • PDF

Thermal Analysis of Hot Roller in a Dry Film Laminator (건식 필름 적층 성형기에서 고온 롤러의 열해석)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.975-980
    • /
    • 2001
  • The thermal analysis of the hot roller in a dry film laminator is studied numerically by steady-state two-dimensional heat transfer. In the laminating process for PDP glass or PCB, the temperature distributions in a hot roller are presented considering the effects of the roller rotation speed and the inner and outer radii of the roller. The results show that the temperature distributions are strongly dependent on Peclet number. If Pe number becomes larger, the iso-thermal lines are more concentric about the rotating axis and the temperature difference on the hot roller surface decreases exponentially. It also shows that if the contact angle between the roller and the film becomes smaller the temperature difference becomes smaller. However, the changes of the rollers inner or outer radius have little effect on the temperature difference.

A Study of the field application on fully Dry-process Waterproofing system (건식방수공법의 현장적용 사례 연구)

  • Yoon kwang-Pil;Moon So-Hyun;Jang Jin-Ho;Jang Sung-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.197-202
    • /
    • 2005
  • This study started to confirm and prove for the applicability of the dry-process waterproofing system to cover the defects of the wet-process waterproofing system according to weather circumstance, foundation condition and maintenance, etc. This process has triple combined waterproofing system using asphalt sheet, metal sheet, engineering plastic film. It is not influenced by the concrete's crack as the foundation of the roof according to the movement of the building because the waterproofing system is designed for maintaining good quality by absorbing the stress of contraction and expansion that is occurred by the variation of temperature. Ali components used in this process can be recycled environmentally. The superiority of this process proved and reconfirmed through with the investigation of about 130 fields, around 30,000nf for two years.

  • PDF

Micro Groove Cutting of Glass Using Abrasive Jet Machining (Abrsive Jet Machining을 이용한 유리의 미세 홈 가공)

  • 최종순;박경호;박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.963-966
    • /
    • 2000
  • Abrasive jet machining(AJM) process is similar to the sand blasting, and effectively removes hard and brittle materials. AJM has applied to rough working such as deburring and rough finishing. As the needs for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM was developed, and became the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro groove cutting of glass. Diameter of hole and width of line in this groove cutting is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro groove cutting in glass, but the size of machined groove was increased about 2~4${\mu}{\textrm}{m}$. therefore, this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD parts.

  • PDF

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Fabrication and characterization of the nano- and micro-particles applied dry adhesives (나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석)

  • Yu, Min Ji;Vu, Minh Canh;Han, Sukjin;Park, Jae Hong;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, the micro- and nano-particles were used and their shapes were transferred into the polydimethylsiloxane (PDMS) film to fabricate the dry adhesives and their properties were investigated. The Cu nanoparticles of the sizes of 20 nm, 40 nm and 70 nm and the polymethylmethacrylate (PMMA) beads of the size of $5{\mu}m$ were used to transfer their images and the resultant properties of the dry adhesives were compared. The effects of particle size and materials on the mechanical property, tensile adhesion strength, light transmittance, surface morphology, water contact angle were studied. The dry adhesives obtained from the transfer process of Cu nanoparticles with the size of 20 nm resulted in the enhancement of tensile adhesion strength more than 300% compared to that of the bare PDMS. The formation of nanostructure of large surface area on the surface of the PDMS film by the Cu nanoparticles may responsible for the improvement. This study suggests that the use of nanoparticles during the fabrication of PDMS dry adhesives is easy and effective and could be applied to the fabrication of the medical patch.

The development of ultra high-speed metal film deposition system and process technology for a heat sink in digital devices (디지털 소자용 방열판 제작을 위한 초고속 금속필름 증착장치 및 공정기술 개발)

  • Yoon, Hyo Eun;Ahn, Seong Joon;Han, Dong Hwan;Ahn, Seungjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.17-25
    • /
    • 2017
  • To resolve the problem of the temperature rise in LED or OLED lighting, until now a thick metal film has been used as a heat-sink. Conventionally, this thick metal film is made by the electroplating method and used as the heat-dissipating plate of the electronic devices. However, nowadays there is increasing need for a Cu metal film with a thickness of several hundred micrometers that can be formed by the dry deposition method. In this work, we designed and fabricated a Cu film deposition system where the heating element is separated from the ceramic crucible, which makes ultra-rapid deposition possible by preventing heat loss. In addition, the resulting induction heating also contributes to the high deposition rate. By tuning the various parameters, we obtained a $100-{\mu}m$ thick Cu film whose heat conductivity is high and whose thickness uniformity is better than 2%, while the deposition rate is as high as $1000{\AA}/s$.

Formation and Properties of Electroplating Copper Pillar Tin Bump (구리기둥주석범프의 전해도금 형성과 특성)

  • Soh, Dea-Wha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.759-764
    • /
    • 2012
  • Copper Pillar Tin Bump (CPTB) was investigated for high density chip interconnect technology development, which was prepared by electroplating and electro-less plating methods. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM-1250 dry film photoresist (DFR), with copper electroplating for Copper Pillar Bump (CPB) formation firstly, and then tin electro-less plating on it for control oxidation. Electric resistivity and mechanical shear strength measurements were introduced to characterize the oxidation effects and bonding process as a function of thermo-compression. Electrical resistivity increased with increasing oxidation thickness, and shear strength had maximum value with $330^{\circ}C$ and 500 N at thermo-compression process. Through the simulation work, it was proved that the CPTB decreased in its size of conduction area as time passes, however it was largely affected by the copper oxidation.

Formation and Properties of Electroplating Copper Pillar Tin Bump on Semiconductor Process (반도체공정에서 구리기둥주석범프의 전해도금 형성과 특성)

  • Wang, Li;Jung, One-Chul;Cho, Il-Hwan;Hong, Sang-Jeen;Hwang, Jae-Ryong;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.726-729
    • /
    • 2010
  • Copper Pillar Tin Bump (CPTB) was investigated for high density chip interconnect technology development, which was prepared by electroplating and electro-less plating methods. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM-1250 dry film photoresist (DFR), with copper electroplating for Copper Pillar Bump (CPB) formation firstly, and then tin electro-less plating on it for control oxidation. Electric resistivity and mechanical shear strength measurements were introduced to characterize the oxidation effects and bonding process as a function of thermo-compression. Electrical resistivity increased with increasing oxidation thickness, and shear strength had maximum value with $330^{\circ}C$ and 500 N thermo-compression process. Through the simulation work, it was proved that when the CPTB decreased in its size, it was largely affected by the copper oxidation.

  • PDF