• Title/Summary/Keyword: 건설성과

Search Result 1,614, Processing Time 0.026 seconds

A Study of the Planning for Development of Smart City Energy Service Module with Citizen Participation (시민참여형 스마트시티 에너지 서비스 모듈 개발 기획에 관한 연구)

  • Shim, Hong-Souk;Lee, Sung-Joo;Park, Kyeong-Min;Seo, Youn-Kyu;Jung, Hyun-Chae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.519-531
    • /
    • 2020
  • Global warming is accelerating as greenhouse gas emissions increase owing to the increase in population and urbanization rates worldwide. As an alternative to this solution, smart cities are being promoted. The purpose of this paper is to suggest a plan for developing energy service modules for the Sejong 5-1 living area, which has been selected as a test-bed for smart cities in Korea. Based on the smart city plans announced by the government for this study, a survey questionnaire on 12 energy services was composed by collecting the opinions of experts. The survey was conducted with 1,000 citizens, the degree of necessity of energy service that citizens think of was identified. Principal Component Analysis and Association Rule Mining were conducted to describe 12 energy service items in a reduced manner and analyze the correlation and relationship of each energy service. Finally, three modules were suggested using the analyzed results so that 12 energy services could be implemented in an efficient platform. These results are expected to contribute to the realization of a smart city to make them easily accessible for those who want to promote platform services in the energy field and envision energy service items.

Analysis of Dynamic Response and Vibration Mitigation for Steel Box Girder Railway Bridges (강박스거더 철도교량의 동적거동 및 진동저감 방안 분석)

  • Hwang, Eui Seung;Kim, Do Young;Jang, Seong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • Recently rapid-transit railway systems have been constructed in many developing countries due to its advantages in congestions and environmental problems. Railway bridges show many different aspects compared to road bridges and passenger comfort and traffic safety are one of them. In particular, deflection and acceleration due to repeated vibration characteristics have a structural weakness that can cause undesirable response. Especially steel railway bridges have been known to have weaknesses due to its relatively light weights compared to concrete bridges. The purpose of this study is to analyze the dynamic response of steel box girder bridges due to passing trains then propose the appropriate method to mitigate the level of vibration in terms of accelerations. Three steel railway bridges are tested and the numerical model to analyze the dynamic response of the bridge by passing train are developed. For the verification of the model, the natural frequency extracted using the acceleration data measured in the bridge is compared with the natural frequency of the numerical model. To mitigate the acceleration level of the bridge, parametric studies are performed to find the effectiveness of the method. Based on the analysis, the appropriate method is proposed for decreasing the acceleration of the bridge for passenger comfort and traffic safety.

A Study on Human Sensitivity Engineered Internal Landscape by Lighting Colors in Tunnels using LISREL Model (LISREL 모헝을 이용한 조명색채별 감성공학적 터널 내부경관 연구)

  • Park, Il-Dong;Ji, Kil-Ryong;Imm, Sung-bin;Kum, Ki-Jung
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.97-106
    • /
    • 2004
  • It is a Known fact that driving through long tunnel increases possibility of traffic accident because of psychological feeling of insecurity and dispersion of drivers' concentration since driving in narrow and limited space for a longtime. It, therefore, results in raising transportation and environment problems, such as traffic accident difficult to be properly dealt with and ventilation. This study aims at proposing a method of augmenting driving amenity by improving the internal lighting facilities in the tunnel. The study is conducted by investigating internal landscapes of tunnels by lighting colors, which are currently being operated. The Color Planning System (CPS), developed by SHARP Co. Ltd, is exploited for selecting adjective that express the sensitivity image on lighting colors. The CPS is an example that applies to sensitivity of human body for products design development. The CPS takes the following process to define the color : 1) expressing "Pvoduct's Image" as "A Word (adjective)" and 2) referring "A Word" to "Image Scale", and 3) determining the color through this "Image Panel". The study is processed by making a questionnaire using the semantic differential (SD) scale, grasping the consciousness structure of experimental persons through the Factor Analysis, and building a model in which dependent variable is "Degree of Preference" about internal landscape in tunnel using LISREL(LInear Structural RELations).

Evaluation of Greenhouse Gas Emission for Wooden House Using Simplified Life Cycle Assessment Tool (목조주택 온실가스 배출량 평가를 위한 간이 전과정평가 툴 개발)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Jung, Soon-Chul;Shin, Hyun-Kyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, simplified LCA (life cycle assessment) tool was developed to increase accessibility and availability on LCA timber construction. The result of simplified LCA was compared with commercial program on LCA (Simapro.7) to verify its availability. As a result of evaluating environmental impacts with the Life Cycle Inventory of all processes, gap between LCA and simplified LCA tools of timber construction was about 1%. Therefore, the simplified LCA tool could analyse greenhouse gas emissions of timber construction and to expand number of data set through improved conveniency of users for developing database of timber construction in Korea. The reduction effects of greenhouse gas emissions of timber construction was about 53% of total emission offset up to construction phase. The results of this study would support decision making process to expand to timber construction policy to showcase environmental friendliness of timber construction. It was expected to contribute to response to the New climate regime in forestry.

Status and Feasibility Study on Tidal Energy Technology (조력에너지 기술 현황 및 경제성 분석)

  • Cho, Young-Beom;Wee, Jung-Ho;Kim, Jeong-In
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-115
    • /
    • 2010
  • Currently, many nations in the world make a strong effort to exploit the new and renewable energy. Tidal energy is the constant and regular power sources with higher and more stable quality compared to other renewable sources. The present paper reports the status of tidal energy analyzing its latest technology and development. In addition, a feasibility study on two types of tidal power plant(TPP) systems is conducted based on many assumptions, conditions and data involved in the Korea environment. The Sihwa and Uldolmok TPP are considered as the reference of tidal barrage(TB) and tidal in stream energy conversion(TISEC) type, respectively. While TB technology is currently mature and reliable, there still remain many environmental issues. Whereas, TISEC is recently received more attention due to its environmental friendly aspect. Therefore, the TISEC is believed to be very promising technology as the TPP. The unit electricity generation cost of Sihwa TPP is approximately 67.3 KRW/kWh. However, considering additional cost of Sihwa lake construction, it increases to 254 KRW/kWh. In Uldolmok, the unit electricity generation cost is calculated to be about 400 KRW/kWh, which is even higher than that of Sihwa TPP. This is ascribed to high cost of TISEC device and construction cost due to its technological infancy as well as relatively small power capacity. Nevertheless, the TISEC technology would be substantially developed in the future due to its many advantageous features.

A study on the excavation cycle by the drill-and-blast method for a room-and-pillar underground structure (주방식 지하구조물의 발파 굴착공정 분석 연구)

  • Lee, Chul-Ho;Hyun, Young-Hwan;Hwang, Je-Don;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.511-524
    • /
    • 2016
  • Since a room-and-pillar underground structure is characterized by its grid-type array of room and pillar, its economical efficiency can be governed by excavation sequence. In this study, the construction period by the drill-and-blast method as a excavation method for a room-and-pillar underground structure was examined. In addition, the parallel excavation sequence was considered as the main sequence of a room-and-pillar underground structure. Sequences of mucking and support installation were derived to estimate the total excavation cycle by taking the case of a road tunnel into consideration. From the excavation cycle of room-and-pillar underground structure, the relationship between available maximum and minimum numbers of jumbo drill machines depending on the number of faces in operation was suggested.

Review on Spent Nuclear Fuel Performance and Degradation Mechanisms under Long-term Dry Storage (사용후핵연료의 장기 건식 건전성 성능과 주요 열화 기구에 관한 고찰)

  • Kim, Juseong;Kook, Donghak;Sim, Jeehyung;Kim, Yongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.333-349
    • /
    • 2013
  • As the capacity of spent nuclear fuel storage pool at reactor sites becomes saturated in ten years, long term dry storage strategy has been recently discussed as an alternative option in Korea. In this study, we reviewed safety-criteria-related research results on spent nuclear fuel performance and integrity under long-term dry storage and proposed the direction and the scope of future domestic research and development. Creep and hydride effect in relation to the embrittlement are known to be the major degradation mechanisms of the spent fuels during the long term dry storage. However, recent research results showed that hydride reorientation and hydride embrittlement are one of the most critical factors to the spent fuel integrity. Accordingly safety criteria of US and Japan for the storage system are basically founded on those mechanisms. However, in Korea, not only in-pile but out-of-pile experimental data have not been generated to understand fuel cladding degradation and to determine the criteria to ensure the safety. In addition, the transient behavior of the spent fuel during transportation also needs to be thoroughly examined. Therefore, various experimental research and development will be required to establish our own safety criteria for future long-term dry storage of domestic spent fuels.

A research framework for development of a LCCA based tunnel asset management system (LCCA기반 터널 자산관리 시스템 개발을 위한 연구개발 프레임웍 설계)

  • Lee, Seung Soo;Kim, Kwang Yeom;Kim, Dong-Gyou;Shin, Hyu-Soung;Seo, Jong Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.615-625
    • /
    • 2014
  • As many parts of Korea are mountainous, many tunnels have been constructed to be in step with rapid economic development since 1970's. However, the interest on maintenance of tunnels is far less than the awareness of need for tunnels. As the tunnel maintenance system is the responsive maintenance system which responds to the problems found during the inspection, it will be very difficult to respond to each problem with the limited budget and manpower of the government agencies when the number of aged tunnels rapidly increase in the future. As such, this study presents the need for the LCCA (Life Cycle Cost Analysis) based tunnel asset management system to transform the tunnel maintenance to a preventive management system in a strategic and long-term viewpoint and proposes the framework for development direction. It observed the asset management implementation cases of social infrastructure in other countries and analyzed the need for asset management technique to manage the tunnels in Korea. Moreover, it applied the LCCA model, which is the economic and engineering quantitative decision making technique, for tunnel asset management to present the concrete direction for development of an asset management model and designed the R&D framework to systemize it.

Effect of Bentonite and Cement on Permeability and Compressive Strength of the Compacted Soil Liner (벤토나이트와 시멘트가 매립장 차수층의 투수성과 압축강도에 미치는 영향(I))

  • Kim, Soo-Moon;Youm, Hee-Nam;Lim, Nam-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.495-504
    • /
    • 2000
  • This study discussed the optimal use of bentonite and cement for the compacted soil liner of landfill. Techniques employed in this optimization included permeability(by KSF 2322) and compressive strength(by KSF 2314). The optimal amount of these materials to the compacted soil liner was determined in accordance with a regulatory guideline of the government: that is, $k=1{\times}10^{-7}cm/sec$. The testing sods were CL(Clayey Soil) and SM(Sandy Soil), which were classified according to LSCS(Unifed Soil Classify System), The results showed that the optimal amounts of bentonite and cement to mix with the compacted CL soil liner were 5% of bentonite and 5% of cement : namely, $k=9.98{\times}10^{-8}cm/sec$ and ${\sigma}_{28}=1275kg/cm^2$. For the compacted SM soil liner. the optimal amount of bentonite was 15%, in conjunction with 5% of cement : namely, $k=9.86{\times}10^{-8}cm/sec$ and ${\sigma}_{28}=18.72kg/cm^2$. It was concluded that the compacted CL or SM soil liner, with containing the optimal amounts of bentonite and cement showed the acceptable permeability and the compressive strength, referring to a regulatory guideline of the government for construction of the landfill.

  • PDF

A Field test of an Integrated Electronic Block System for verification of the suitability (통합형 전자폐색제어장치의 적합성 확인을 위한 현장시험)

  • Kim, Young-June;Baek, Jong-Hyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6427-6433
    • /
    • 2013
  • For trains to run safely and quickly, the train should always follow the preceding train at a proper spacing. For this purpose, a certain distance between the stations is set for each block section. For the safe operation of trains in one block section, only one train service for an automatic block system is needed. The existing block system is composed an ABS, which is a linked track circuit and line sideway system through the interlocking system. The interlocking system is being replaced with a domestic electronic interlocking system. On the other hand, the block system still uses the relay format of an analog system, and is independently installed of the line sideway systems. Therefore, the existing block system has many problems in terms of construction and maintenance. In addition, the existing domestic line is used for ABS and LEU , which is installed separately, despite the train being controlled by the information of the same signal at the same location. This is not efficient in terms of each product price and the maintenance costs. This paper introduces an integrated electronic block system and the field test results. The field test was carried out through a periodic inspection performed eight times from January to late August.