• Title/Summary/Keyword: 건설분류체계

Search Result 346, Processing Time 0.017 seconds

A Study on Countermeasures for Risk Factors Through Risk Analysis of Earthwork (흙막이공의 리스크 분석을 통한 리스크 요인별 대응 방안에 관한 연구)

  • Jeon, Byung Ju;Isah, Muritala Adebayo;Kim, Hyun Bee;Lee, Yang Gyu;Kim, Byung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.681-688
    • /
    • 2022
  • According to a recent study, most construction companies in Korea do not manage risk effectively, and it is judged that the risk management system needs to be improved. In addition, most risk-related studies deal with risks from a macroscopic perspective, and there are few studies dealing with process risks at the project construction stage. Therefore, this study tried to suggest a risk response plan through analysis and classification of risk factors that may occur in retaining work among process risks. To this end, a workshop was held for risk experts to identify and analyze risks that may occur during the construction of retaining work for apartments. As a result of the study, it was expected that savings of KRW 4.97 billion would be possible in the 95 % confidence interval, and the maximum possible cost was reduced from KRW 15 billion to about KRW 10 billion. Based on the risk reduction ratio, it was found that risks that can be reduced without any special input cost, risks with large effects in response to risks, and risks with insignificant effects were found. Therefore, using the types and risk factors presented in this study as guides, it is expected that it will be helpful in successfully operating the project if an appropriate response strategy is prepared and systematically responded to the site conditions.

Analysis on Propagation of Highway Traffic Flow Turbulence at Entrance-Ramp Junctions (교통류 난류현상을 이용한 고속도로 합류부의 영향권 분석)

  • Lee, Ki Yoon;Roh, Chang Gyun;Son, BongSoo;Chung, Jin-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.167-173
    • /
    • 2009
  • In general, an influenced area of merging section is defined as 500 m including 100 m upstream and 400 m downstream. However, from an observation of the actual traffic flow, it is found that merging effect influences more on downstream than upstream. In this study, an influenced area of merging section on freeway is analyzed by using turbulence which is defined as conflicts between vehicles. In order to overcome the limits of existing traffic flow detection system established with intervals of about 500 m, this study uses raw data collected from the detectors which are established in entrance ramps with similar road conditions. To divide data of each point into similar road conditions, the data of total 72 hours is sorted by Level of Service. An influenced area analyzed by standard deviation of speed is 700 m section of highway, including 300 m upstream and 400 m downstream, for both right and left ramps. It is the result including upstream 200 m more than previous studies.

Development of 4D System based on New Methodology for Visualizing Construction Schedule Data for Civil Engineering Projects (토목시설물 공사관리 시각화를 취한 4D시스템 적용방안)

  • Kang, Leen Seok;Jee, Sang Bok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.95-103
    • /
    • 2006
  • One of the main functions of the 4D system includes visualizing numerical schedule data in construction. The existing 4D tools have an excellent function for simulating building projects that all activities are progressed according to vertical work zone. However, it is not easy to implement all of it in the civil engineering project because the construction activities of highway and railway projects are progressed on the horizontal work zone and the 4D simulation for those projects should include earthwork objects that depend on the natural ground condition. This study suggests a new methodology for improving those limitations of 4D system for the civil engineering project and develops a new system by the suggested methodology. To verify the developed system, this study attempts to simulate 4D object for horizontal elements such as earthwork, paving work and tunneling work. The morphing and multi-texturing techniques developed in the study can be new approaches to simulate 4D object for the earthwork such as cutting and banking whose activities are progressed on the natural ground condition. The research results can be expected as a draft function for improving the application of 4D system in civil engineering projects.

Changes of Salt Concentration by the Height of Ground Water Table on Disused Saltpan for Golf Course Construction Site (골프코스를 조성할 폐염전 매립지의 지하수위에 따른 토양산도 및 전기전도도 변화)

  • Lee, Dong-Ik;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.143-150
    • /
    • 2009
  • High salt concentration is one of the most important limit factor on plant growth at a disused saltpan for golf course construction site. The control of salt in soil is definitely required and the monitoring of salt concentration in soil and ground water also required to amend soil physiochemical properties. This research was carried out to monitor the pH and salt concentration changes by the height of ground water. By the physiochemical analysis test, the soil contains a high salt concentration and classified as a slight alkaline clay soil. The height of ground water table changed to 1.3m, 3.3m and 2.8m at dry season(mid-late June, 2005), monsoon season(early-mid July) and after monsoon(late July), respectively. Compare to the average ground level of 2.9m, the ground water was over flooded about OAm at monsoon season. The electrical conductivity(ECe) was measured above $4.0dS{\cdot}m^{-1}$ over all areas and however, some areas showed over $20dS{\cdot}m^{-1}$. During a monsoon season, ECe was lowered to $1.2{\sim}15.0dS{\cdot}m^{-1}$, compared with those of the dry season. Therefore, the interception of the capillary connection between planting layer and ground water which contains high salt concentration should be adapted when golf courses are constructed on disused saltpan. The phytotoxicity caused by salt damage may be controled by the interception of capillary fringe of salt flow to the topsoil profile at the upper layer of the ground water table.

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.