• Title/Summary/Keyword: 건설물자재

Search Result 96, Processing Time 0.025 seconds

Development of Hybrid Movable Weir for River Safety Management (안전한 하천관리를 위한 첨단 하이브리드 가동보 개발)

  • Kim, Phil Shik;Kwon, Hyung Joong;Park, Hyun Jun;Park, Chan Gi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.501-501
    • /
    • 2016
  • 하천은 크게 이수와 치수 및 환경 등의 주요 기능을 가지고 있다. 이수는 하천과 물이 주는 가치를 말하며, 치수는 기능이라기보다는 엄밀한 의미에서 하천관리를 통한 자연재해 방지를 의미한다. 이러한 이 치수 기능의 확보와 수변환경 조성을 위해 친환경적 수리구조물인 가동보의 설치가 증가 하고 있다. 가동보는 하천에 주로 설치되는 수리구조물 중의 하나로 국내에서는 2000년대부터 고정보를 대신하여 설치가 시작 되었으며, 최근 친환경적 하천정비 및 다양한 목적 등으로 국내 하천에 약 1,200여개의 가동보가 설치 및 운영되고 있다. 국내에 적용되고 있는 가동보 중 개량형 가동보의 제작 및 시공기술은 해외의 원천기술을 도입한 것으로 자재 수급 및 유지보수가 용이하지 못할 뿐만 아니라, 국내 여건에 맞지 않아 많은 문제점을 가지고 있다. 이에, 본 연구에서는 수자원 확보 및 수변 공간 조성 등을 위해 1) 기존 스틸소재의 개량형 가동보를 하이브리드(GFRP+스틸)소재로 개발하고, 2) 상류에 유하되는 이물질을 수위 저하 없이 하류로 배출하기 위해 각 경간의 개별 작동시스템을 개발하며, 3) 효율적인 하천 관리를 위하여 가동보 상단으로 월류 되는 하천 유량을 계측하기 위한 실시간 유량측정 시스템 개발 등으로 첨단 하이브리드 가동보를 개발하였다. 개발결과 기존 개량형 가동보의 단점인 부식해결로 인해 내구성을 확보하였으며, 경간별 개별 작동시스템 적용으로 하천 수위 조절이 가능하였다. 또한 실시간 유량 계측 시스템 적용으로 실시간 하천유량 계측이 가능해 개발된 기술을 국내 가동보에 적용한다면 원활한 하천 수위 관리 및 실시간 유량 측정이 가능하여 안전한 하천관리가 가능할 것으로 판단된다.

  • PDF

Economic Analysis of a 5-Story RC OMRF Retrofitted with Modified Epoxy Mortar for Improving Seismic Performance (변성에폭시 모르터로 내진보강한 5층 철근콘크리트 보통모멘트골조의 경제성 분석)

  • Kang, Suk-Bong;Kwak, Jongman;Shin, Dongwoo;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.207-215
    • /
    • 2014
  • As a reinforcement material for RC members, the modified epoxy mortar has been reported one of the superior materials since the material can improve the load capacity and the seismic performance of the RC members. However, there were few experimental studies and analytical research for improving seismic performance with the material. This study is to propose an effective reinforcement plan for RC Ordinary Moment Resisting Frame (OMRF) with the evaluation of seismic performance and economic analysis. For the objective, first, the load-deflection curve of a simple beam specimen was compared with the analytical results. Second, a 5-story RC OMRF structure was designed only for gravity load and the alternatives for seismic reinforcement were suggested. Third, pushover analysis was executed for evaluation of design coefficients and seismic performance of the structures. Finally, an effective reinforcement plan was suggested based on the results of quantity take-off and economic analysis. The findings of this study can be utilized as the basic data when the modified epoxy mortar is applied to practice for improving the seismic performance of RC members.

Evaluation of Electromagnetic Pulse Shielding Effectiveness and Bonding Performance of Inorganic Paint based on Carbon Material (탄소재료 기반 무기계 도료의 전자파 차폐성능 및 부착성능 평가)

  • Jang, Kyong-Pil;Kim, Sang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.801-807
    • /
    • 2021
  • In various industrial fields and infrastructure based on electronic components, such as communication equipment, transportation, computer networks, and military equipment, the need for electromagnetic pulse shielding has increased. Two methods for applying electromagnetic pulse shielding are effective. The first is construction using shielding materials, such as shielding concrete, shielding doors, and shielding windows. The other is coating shielding paints on non-shielding structures. Electromagnetic pulse shielding paints are made using conductive materials, such as carbon nanotubes, graphite, carbon black, and carbon fiber. In this paint, electromagnetic pulse shielding performance is added to the commonly used water-based paint. In this study, the shielding effectiveness and bonding performance of paints using conductive graphite and carbon black as shielding materials were evaluated to develop electromagnetic pulse shielding inorganic paints. The shielding effectiveness and bonding performance were evaluated by applying six mixtures composed of different kinds and amounts of shielding material. The mixture of conductive graphite and carbon black at a weight ratio of 1:0.2 was the most effective in shielding as 33.6 dB. Furthermore, the mixture produced using conductive graphite only showed the highest bonding performance of 1.06 MPa.

An Experimental Study on the Compressive Strength Properties of Sulfur-solidified Materials using Bottom Ash Fine Aggregate (바닥재 잔골재를 활용한 유황고형화 성형물의 압축강도 특성에 대한 실험적 연구)

  • Hong, Bumui;Choi, Changsik;Yun, Jungho;Eom, Minseop;Jeon, Sinsung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • Differently from fly ash, the bottom ash produced from thermal power generation has been treated as an industrial waste matter, and almost reclaimed or was applied with the additive of the part concrete. Bottom ash has various problems to use with the aggregate. Bottom ash is lighter than typically the sand or the gravel and it's physical properties (compressive strength etc.) is somewhat low because of high absorptance. In order to manufacture the ash concrete, we used a bottom ash as a main material and a pure sulfur as a binder. In this study, fundamental research methods that vary the grain-size of bottom ash and the ratio of sulfur vs ash were investigated to improve the quality of ash concrete such as compressive strength. Bottom ash in this research which occurs from domestic 4 place power plants, was checked physical and chemical properties. The compressive strength seems the result which simultaneously undergoes an influence in content of the sulfur and Bottom ash grain-size. We got the result of the maximum 92 MPa. The compressive strength was high result for grain size below 1.2 mm and high sulfur content.

Hydrogeochemical Characteristics and Contamination of Dissolved Major ions and Heavy Metals in Waters and Sediments from the Tancheon River (탄천의 하상퇴적물과 하천수내 주요 용존 이온과 중금속의 수리지구화학적 특성과 오염)

  • 이성은;김규한;이진수;전효택
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.25-41
    • /
    • 2002
  • In order to investigate the hydrogeochemical characteristics and contamination of dissolved major ions and heavy metals in the Tancheon River, river water and sediment samples were collected at 18 locations, along a distance of 69 km, between Yongin-si in Kyunggi-do and Samsung-dong in Seoul on October in 2000 and April in 2001. After appropriate sample preparation, waters were analyzed for the dissolved constituents and sediments. The pH values of river waters were in the range of 7.0 to 9.3 and could be plotted in the area of surface environment. The level of $Ca^{2+}$, , CI-, sol-, N0$_{3}$ and HC0$_{3}$ in the Tancheon River were higher than those in world average river water. Most of dissolved constituents in the river waters increased toward downstream from upstream. In particular, high concentrations of Zn2+, Na$_{+}$, CI$^{-}$, SO$_{4}^{2-}$ and N03- were found near densely residential areas and the Sungnam waste water treatment plant. The relative ion enrichment was caused by the inflow of local domestic and industrial sewages. Also, Ca2+ and HC03- concentrations were enriched in the middle of the Tancheon River due to the dissolution of cements. This indicates that the apartment complexes were built on a large scale in the upriver since these ten years and large amounts of construction materials such as cements were flowed into the Tancheon River. Concentrations of heavy metals (Mn, Cd, Cu, Pb, Zn) in sediments from the Tancheon River exceeded the lower limit of tolerence level in bottom sediment established by the Ontario Ministry of the Environment (OME) of Canada. In particular, these metals were highly elevated in sediment (TSM-12) collected from near the Sungnam waste water treatment plant. Heavy metals were higher enriched in sediments collected from dry period rather than wet period.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.