• Title/Summary/Keyword: 건물 성능

Search Result 1,191, Processing Time 0.022 seconds

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.

Evaluation of Photochemical Reflectance Index (PRI) Response to Soybean Drought stress under Climate Change Conditions (기후변화 조건에서 콩 한발스트레스에 대한 광화학 반사 지수 반응 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.261-268
    • /
    • 2019
  • Climate change and drought stress are having profound impacts on crop growth and development by altering crop physiological processes including photosynthetic activity. But finding a rapid, efficient, and non-destructive method for estimating environmental stress responses in the leaf and canopy is still a difficult issue for remote sensing research. We compared the relationships between photochemical reflectance index(PRI) and various optical and experimental indices on soybean drought stress under climate change conditions. Canopy photosynthesis trait, biomass change, chlorophyll fluorescence(Fv/Fm), stomatal conductance showed significant correlations with midday PRI value across the drought stress period under various climate conditions. In high temperature treatment, PRI were more sensitive to enhanced drought stress, demonstrating the negative effect of the high temperature on the drought stress. But high CO2 concentration alleviated the midday depression of both photosynthesis and PRI. Although air temperature and CO2 concentration could affect PRI interpretation and assessment of canopy radiation use efficiency(RUE), PRI was significantly correlated with canopy RUE both under climate change and drought stress conditions, indicating the applicability of PRI for tracking the drought stress responses in soybean. However, it is necessary to develop an integrated model for stress diagnosis using PRI at canopy level by minimizing the influence of physical and physiological factors on PRI and incorporating the effects of other vegetation indices.

Forecast study for active factor of V2B(Vehicle to Building) operation zero energy building using monte carlo method (몬테카를로방법을 이용한 V2B(Vehicle to Building) 운용 제로에너지빌딩의 액티브 요소 예측 연구)

  • Kim, Youngil;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.29-34
    • /
    • 2017
  • Factors of Zero-Energy Building are divided into active and passive factor. Passive factor means insulation, heat bridge of building like insulation, windows and doors, awning, outside etc. and active factor means energy output and efficiency coefficient. Energy output of active factor is achieved by new generating energy. This study anticipated how many effects will be produced when not new generating energy but Vehicle to Building; V2B, bi-directional charging and discharging technology, is applied to Zero-Energy Building. In new generating energy, power generation will be anticipated by geography and climate, but in V2B, several input variable like user's discharging intention and number of usable charger etc. should be considered. We can check how much V2B contribute to the Zero-Energy Building by anticipated results, and that results should be anticipated by using probabilitic method because there is few statistical data. This study anticipate change of charging and discharging pattern, based by Demand Response slot, by using monte carlo method among the probabilitic methods.

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

Pedestrian Dead Reckoning based Position Estimation Scheme considering Pedestrian's Various Movement Type under Combat Environments (전장환경 하에서 보행자의 다양한 이동유형을 고려한 관성항법 기반의 위치인식 기법)

  • Park, SangHoon;Chae, Jongmok;Lee, Jang-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.609-617
    • /
    • 2016
  • In general, Personal Navigation Systems (PNSs) can be defined systems to acquire pedestrian positional information. GPS is an example of PNS. However, GPS can only be used where the GPS signal can be received. Pedestrian Dead Reckoning (PDR) can estimate the positional information of pedestrians using Inertial Measurement Unit (IMU). Therefore, PDR can be used for GPS-disabled areas. This paper proposes a PDR scheme considering various movement types over GPS-disabled areas as combat environments. We propose a movement distance estimation scheme and movement direction estimation scheme as pedestrian's various movement types such as walking, running and crawling using IMU. Also, we propose a fusion algorithm between GPS and PDR to mitigate the lack of accuracy of positional information at the entrance to the building. The proposed algorithm has been tested in a real test bed. In the experimental results, the proposed algorithms exhibited an average position error distance of 5.64m and position error rate in goal point of 3.41% as a pedestrian traveled 0.6km.

Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM (이미지 기반 기계 학습과 BIM을 활용한 자동화된 시공 진도 관리 - 합성곱 신경망 모델(CNN)과 실내측위기술, 4D BIM을 기반으로 -)

  • Rho, Juhee;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.5
    • /
    • pp.11-19
    • /
    • 2020
  • A daily progress monitoring and further schedule management of a construction project have a significant impact on the construction manager's decision making in schedule change and controlling field operation. However, a current site monitoring method highly relies on the manually recorded daily-log book by the person in charge of the work. For this reason, it is difficult to take a detached view and sometimes human error such as omission of contents may occur. In order to resolve these problems, previous researches have developed automated site monitoring method with the object recognition-based visualization or BIM data creation. Despite of the research results along with the related technology development, there are limitations in application targeting the practical construction projects due to the constraints in the experimental methods that assume the fixed equipment at a specific location. To overcome these limitations, some smart devices carried by the field workers can be employed as a medium for data creation. Specifically, the extracted information from the site picture by object recognition technology of CNN model, and positional information by GIPS are applied to update 4D BIM data. A standard CNN model is developed and BIM data modification experiments are conducted with the collected data to validate the research suggestion. Based on the experimental results, it is confirmed that the methods and performance are applicable to the construction site management and further it is expected to contribute speedy and precise data creation with the application of automated progress monitoring methods.

Attack Capability Analysis for Securing Self-Survival of Air Defense Weapons (대공방어무기의 자기생존성 확보를 위한 공격능력분석)

  • Kim, Sea Ill;Shin, Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.11-17
    • /
    • 2021
  • The 30mm anti-aircraft gun has been developed with various types of weapon systems such as protective, protective complex, and wheel-type anti-aircraft artillery. The role of this anti-aircraft gun is an important anti-aircraft weapon in charge of air defense. Anti-aircraft weapons are tasked with defending the airspace from aircraft attacks. In particular, anti-aircraft weapons are organized in combination with mechanized units. And anti-aircraft weapons are prone to attack by enemies because they operate on the front lines of the battlefield. The enemy is expected to attack our troops by covering up or concealing as much as possible in order to increase their viability. Therefore, this study analyzed whether our 30mm anti-aircraft bullets could subdue the enemy in cover. This study analyzed the performance of 30mm anti-aircraft bullets using the M&S technique. For this study, live shooting and simulation method by M&S were used for the experiment. In this study, steel plate and plywood were used for the live shooting experiment. In addition, in the simulation process through M&S, this study used the PRODAS model, AUTODYN model, and Split-x model to analyze the trajectory, penetration, and fragmentation capability of 30mm anti-aircraft bullets. According to the experimental results, it has been proven that 30mm anti-aircraft bullets can destroy enemy armored vehicles. 30mm anti-aircraft bullets succeeded in quickly subduing enemies concealed in general buildings or forests. In this way, it was possible to minimize damage to allies in advance.

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.

A Study on the Application Method of Facility Classification System for the Development of Asset Management System for Power Generation Structures (발전구조물의 자산관리 시스템 구축을 위한 시설물분류체계 활용방안에 관한 연구)

  • Jeon, Seokhyeon;Jeong, Jeongsik;Ahn, Jinhee;Kim, Changhak
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.113-118
    • /
    • 2019
  • Recently, the maintenance concept of infrastructure has been changed from the stability management of the structure determined by the safety inspection of the existing facilities to the asset management related to evaluating and managing the performance of the facilities. For management of the property of the facilities, it is necessary to efficiently classify their information for the maintenance and service level of the facilities and to manage them. In the case of power plant facility, especially, it is a complex structure, which is constructed in a various component and detail. In this study, therefore, the components of power plant facility were classified into facilities, spaces, parts, and elements considering the type of integrated construction classification system in Korea. To reflect the deterioration rate of the facility in accordance with environmental conditions such as airborne salt and humidity etc., it was classified by adding direction, interior, and exterior condition of each component not to be considered in the existing classification system for its effective and systematic maintenance, since it is generally located in the coastal area due to the operation of the power generation structure. The classification system developed in this study can be used as fundamental data for development of the computer system for asset management of power plant facility.