• Title/Summary/Keyword: 건물부하계산 프로그램

Search Result 10, Processing Time 0.024 seconds

Standard Weather Data for Seoul (동적열부하계산용 서울의 표준기상데이터)

  • Kim, Doo-Chun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.4
    • /
    • pp.254-267
    • /
    • 1984
  • 이 자료는 건물의 연간 에너지소요량의 산정을 위한 동적열부하계산용 전산프로그램의 입력자료인 서울의 평균년 기상데이터로서, 한국과학재단 연구보고서인 "서울지방의 표준기상데이터에 관한 연구"로 부터 발췌한 것이다.

  • PDF

Introduction of RTS Method and Load Calculation Program (RTS법의 개요 및 프로그램 소개)

  • Kim, Kang-San;Kim, Yong-Chan;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1067-1072
    • /
    • 2008
  • This paper introduces the RTS method developed by the ASHRAE. In addition, a load calculation program was developed based on the RTS method and then the calculation logic and procedure are explained in detail. The developed program was designed to allow easy and precise predictions of the building load.

  • PDF

Introduction of RTS Method and Load Calculation Program (RTS 법의 개요 및 프로그램 소개)

  • Kim, Kang-San;Kim, Yong-Chan;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.519-524
    • /
    • 2006
  • This paper introduces the RTS method developed by the ASHRAE. In addition, a load calculation program was developed based on the RTS method and then the calculation logic and procedure are explained in detail. The developed program was designed to allow easy and precise predictions of the building load.

  • PDF

COMPARISON OF THE EFFECTS OF THERMAL MASS EXTERIOR WALLS ON HEATING AND COOLING LOADS IN COMMERCIAL BUILDINGS - Evaluation of Delta Load Concept Used in The Draft Standard ASHRAE 90. 1 - (상업용 건물에 있어서 외벽의 축열용량이 난방부하에 미치는 영향 연구 - ASHRAE Standard 90. 1안에서 사용된 Delta Load 개념의 평가 -)

  • Park, Sang-Dong;Kusuda, Tamami
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.4
    • /
    • pp.372-379
    • /
    • 1986
  • 본고는 상업용 건물에 있어서의 냉난방부하에 대한 외벽의 축열(열용량)효과를 비교$\cdot$분석하는데 그 목적이 있다. 가장 최근에 발표된 에너지 해석 프로그램인 DOE-2.1C를 이용하여 Berkeley Solar Group (BSG) 이 제안한 축열효과를 분석하였다. 본 고에서의 축열효과는 "delta load"로서 표현되어 있으며 "delta load"는 전형적인 나무구조 건물과 벽돌조 건물의 연간 냉난방부하의 차이로서 표시된다. BSG 보고서에 의하면 delta load는 (1)구조물의 위치와 관련한 단열방법 (2)벽의 열용량 (3)벽의 열관류을 (4)기후조건에 따라 달라진다고 되어 있다. 본 고에서의 delta load 계산은 중규모 사무소 건물을 대상으로 하였으며 Lake Charles, LA와 Madison, WI 기후 데이터를 사용하였는데 DOE-2.1C 사용에 의한 delta load는 BSG의 결과와 일반적으로 잘 조화가 되는 것으로 나타났으나 외주부의 방향에 따른 dalta load와 난방에 있어서는 다소 큰 차이를 보여 주고 있으며, 외단열과 중간열의 효과는 BSG의 결과와 마찬가지로 비슷하였다.

  • PDF

A Study on the Construction of Korean Evacuation Load Model (한국형 재실자 피난부하모델 구축에 관한 연구)

  • Lee, Jeong-Soo;Kwon, Heung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5221-5229
    • /
    • 2013
  • This study focused on the construction of Korean Evacuation load Model for reflecting Korean Evacuation behaviors. For the purposes, several evacuation experiments are executed according to the ages, and the level and types of disabilities. We accumulated the data on the evacuation velocity and behavior patterns according the ages, and the level and types of disabilities. From these results, we proposed the Korean Evacuation Load Model and compared with several popular evacuation simulation model such SIMULEX. As results of these studies, we found the possibility of construction of Korean Evacuation Simulation System based on the Korean Evacuation Model including the evacuation velocity and human behaviors.

Analysis of the Energy Saving Effect for the External Insulation Construction by Building Load Calculation Method (건물 부하계산 프로그램을 이용한 외단열 시공의 에너지 절감 효과 분석)

  • Park, Jaejoong;Myeong, Jemin;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-104
    • /
    • 2017
  • Reinforcement of insulation in apartment buildings reduces the heating and cooling energy consumption by lowering the heat transfer in the building envelope. There are differences between internal and external insulation methods in heat transmission properties. However, some building load calculation programs cannot analysis the differences between the two. This is because these programs do no account for the timelag or thermal storage effect of the wall according to the location of insulation. In this study, the heat transmission characteristics of internal and external insulation were analyzed by EnergyPlus, and heating and cooling energy demand was compared. The results showed that external insulation system had lower heating and cooling loads than internal insulation system. Also the heat transfer rate of external insulation is steadier than internal insulation. About 13.6% of heating and cooling energy demand decreased when the outdoor wall was finished with external insulation compared to the demand with internal insulation.

A Study on Development of Simplified Thermal Load Calculation Program for Building Energy Analysis (건물에너지 해석을 위한 간이열부하 해석프로그램 개발에 관한 연구)

  • Kang, Yoon-Suk;Um, Mi-Eun;Ihm, Pyeong-Chan;Park, Jong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.72-77
    • /
    • 2008
  • About 25% of overall energy use of Korea had been spent in buildings. It is crucial to acknowledge the importance of saving energy in buildings. In order to save energy, it is important to predict accurate energy use. There are numerous energy simulation program that predicts both energy load and energy use. The problem of the energy simulation program is that it holds too many input variables, and it needs experts to model a building. So, our purpose of this study is to develop the simplified thermal load calculation program for building energy analysis which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the engine of the program is DOE2, we verified the validity of S-DOE by comparing peak heating & cooling load results and annual energy use results. The results shows that there are little difference between VisualDOE and S-DOE. Also it showed that S-DOE took less time to input variables than VisualDOE. These results reveals that the application of S-DOE is possible to accurately predict energy load and energy use of the building and still have strong point that it takes less time to analyse building energy.

  • PDF

Development of Simplified Building Energy Simulation Program for Building Energy Performance Analysis (건물에너지 성능 분석을 위한 간이 건물에너지 시뮬레이션 프로그램 개발에 관한 연구)

  • Park, Jong-Il;Kang, Yoon-Suk;Ihm, Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • There are various types of energy simulation tool to predict both thermal load and energy use. However, the problem about these software is that they have too much input variables and need expert with skills to run the simulation. Therefore, the purpose of this study is to develop the thermal analysis simulation program with input variables which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the simulation engine of the program is DOE2, the validity of S-DOE is performed by comparing peak heating and cooling load results with VisualDOE and annual energy use results with actual energy use of 1996. The results have shown that there are little difference between VisualDOE and S-DOE. Also it showed that there are little difference between actual energy use and S-DOE energy use results. S-DOE took less time to model a building than VisualDOE. These results reveals that the application of S-DOE have potentials in accurately predicting both energy load and energy use of the building and still have an advantage of taking less time to model a building.

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.