거시경제는 한 나라 경제 전체의 움직임을 보여주기 때문에 주식을 분석할 때 선행되어 분석되는 지표 중 하나이다. 실업률, 이자율, 물가, 국민소득, 환율, 통화량, 국제수지 등 국가차원의 경제 상황 전반은 주식시장에 직접적인 영향을 미치고, 경제 지표는 개별 주가와의 상관관계가 있기 때문에 주식을 예측하기 위해 많은 증권사 애널리스트들이 관심 있게 지켜보고, 개별 주가에 영향을 고려하여 매수와 매도를 판단하는 주요한 근거자료가 되고 있다. 주가에 영향을 미치는 경제 지표를 선행지표로 분석하고, 주가예측을 딥러닝 기반의 예측을 통하여 예측 후 실제 주가를 비교하여 차이가 발생하면 거시지표에 대한 가중치를 조절하여 지속적인 반복학습을 통하여 주식의 매수와 매도를 판단한다면, 주식은 더 이상 도박과 같은 투기가 아닌 건전한 투자가 될 수 있다. 따라서 본 연구는 거시지표와 인공지능의 딥러닝 알고리즘방식을 이용하여 자동화된 주식매매가 가능하도록 연구를 수행하였다.
주가는 그 기업의 미래 가치의 척도이기 때문에 주가를 분석할 때 기업의 성장성인 매출과 이익 등을 고려하여 주식을 투자한다. 기관투자자들은 종목 선정 기준을 잡기 위해서 현재 산업의 트렌드와 거시경제 지표를 보고 성장 가능한 관련 분야를 먼저 정하고 관련 기업을 선정한 후 기업에 대한 분석을 하고 목표가를 설정 후에 매수를 하고 목표가에 도달하면 매도하는 방식으로 주식 매매를 실시한다. 하지만, 일반 개인 투자자들은 경제에 대한 지식이 기관이나 외국인 투자자에 비교하여 부족하고, 기업에 대한 재무재표 분석이나 성장성에 대한 분석 없이 전문가나 지인의 추천종목을 따라 투자를 하여 기관투자자나 외국인 투자자들 보다 수익률 면에서 낮은 편이다. 따라서, 본 연구에서는 기업의 성장성인 매출과 이익 등을 고려한 지표인 ROE를 분석하여 저평가된 종목을 선택하고, 선택된 종목의 주가 흐름을 딥러닝 알고리즘을 통하여 예측하는 연구방법을 제안하여 투기가 아닌 건전한 투자에 도움이 되기 위해 본 연구를 진행한다.
4차산업혁명의 핵심인 인공지능 기술은 인간의 능력을 뛰어넘어 주식예측에도 적용하고 있으면 예측이 불가능한 것을 딥러닝 기법과 머신러닝을 통하여 지능화된 판단을 내리고 있는 실정이다. 미국의 펀드매니지먼트 회사에서는 증시 에널리스트의 역할을 인공지능이 대신하고 있으며, 이 분야의 연구가 활발히 진행 중에 있다. 본 연구에서는 BLSTM을 이용하여 기존의 LSTM방식의 단방향 예측에서 발생하는 오류를 줄이고, 양방향으로 예측하여 예측에 대한 오류를 줄이고, 주식 가격에 영향을 미치는 거시 지표, 즉 경제성장률, 경제지표, 이자율, 무역수지, 환율, 통화량을 분석한다. 거시 지표 분석 후에 개별 주식에 대한 PBR, BPS, ROE 예측과 가장 주식 가격에 영향을 미치는 외국인, 기관, 연기금 등 매수와 매도 물량을 분석하여 주식의 목표주가를 정확히 예측하여 주식 투자에 도움을 주기 위해 본 연구를 수행했다.
중국 우한발 코로나 19 바이러스로 인하여 세계 경제가 침체하여, 미국연방준비제도를 비롯한 대부분 국가에서는 통화량을 늘려 경기를 부양하는 정책을 내놓았다. 주식 투자자들 대부분은 기업에 대한 재무제표 분석이 없이 유명 유튜버의 추천종목이나 지인의 말만 듣고 투자하는 경향이 있어서 주식투자의 손실 가능성이 크다. 따라서, 본 연구에서는 기존 자동매매 조건에서 발전된 인공지능 딥러닝 기법을 이용하여 주가에 영향을 미치는 거시지표를 분석하고 예측하여 주가에 미치는 상관관계를 통한 개별주가예측에 가중치를 부여하고 주가를 예측한다. 또한, 주가는 실시간 증시뉴스에 민감하게 반응하기 때문에 증시뉴스 텍스트 마이닝을 통하여 인공지능으로 예측된 주가에 가중치를 반영하여 더 정확한 주가 예측을 하여 주식 투자자에게 매매의 판단 근거를 제공하여 건전한 주식투자가 되도록 이바지하였다.
거시경제는 한 나라의 경제 전반의 움직임을 나타내는 개념으로 경제주체인 기업, 정부, 가계경제 활동 전반에 영향을 미친다. 거시경제는 국민소득, 물가, 실업, 통화, 금리, 원자재 등의 변화를 살펴보면 경제 주체들의 행위와 상호작업이 제품과 서비스의 가격에 영향을 파악할 수 있다. 미국연방준비제도(FED)는 코로나 경제침체를 극복하기 위한 다양한 경기부양책을 내 놓으며, 세계경제를 이끌고 있다. 현재 코로나로 인한 주가가 2020년3월20일에 지속적으로 하락하였지만, FED의 강력한 경지부양책인 양적완화로 미국의 S&P500지수는 3월 23일이후 반등을 시작해 12월 15일 3,694.62까지 회복에 성공했다. 따라서 주가의 예측을 기업의 재무제표로 판단하는 것이 아니라 거시경제지표에 따른 FED의 경기부양책이 더 영향을 미치고 있는 실정이다. 따라서 본 연구는 FED의 경기부양책과 주가에 미치는 영향을 분석하여 주식투자에 손실을 줄이고 건전한 투자 정착을 위해 본 연구를 진행하였다.
최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험(Simulation) 모형의 기반이 된다. 본 연구에서는 이러한 의미 기반 지식모델을 통합에 있어 텍스트 마이닝을 통해 도출된 토픽(Topic) 모델 간 통합 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다. 통합된 의미 기반 지식모델은 토픽 간의 구조적 규칙과 정도 중심성, 근접 중심성, 매개 중심성 등 관계적 의미분석이 가능하며 대규모 비정형 문서의 의미 분석과 활용에 실질적인 기반 연구가 될 수 있다.
최근 자연어 및 정형언어 처리, 인공지능 알고리즘 등을 활용한 효율적인 의미 기반 지식모델의 생성과 분석 방법이 제시되고 있다. 이러한 의미 기반 지식모델은 효율적 의사결정트리(Decision Making Tree)와 특정 상황에 대한 체계적인 문제해결(Problem Solving) 경로 분석에 활용된다. 특히 다양한 복잡계 및 사회 연계망 분석에 있어 정적 지표 생성과 회귀 분석, 행위적 모델을 통한 추이분석, 거시예측을 지원하는 모의실험 모형의 기반이 된다. 하지만 대부분의 지식 모델은 특정 지표나 정제된 데이터를 수동적으로 모델링하여 분석에 활용한다. 본 논문에서는 텍스트 마이닝 기술을 통해 방대한 비정형 정보로부터 지식 모델을 구성하는 토픽인자와 관계 노드를 생성하고 이를 통합하는 방법과 정형적 알고리즘을 제시한다. 이를 위해 먼저, 텍스트 마이닝을 통해 도출되는 키워드 맵을 동치적 지식맵으로 변환하고 이를 의미적 지식모델로 통합하는 방법을 설명한다. 또한 키워드 맵으로부터 유의미한 토픽 맵을 투영하는 방법과 의미적 동치 모델을 유도하는 알고리즘을 제안한다.
주식 시장은 기업 실적 및 경기 상황뿐만 아니라 정치, 사회, 자연재해 등 예기치 못한 요소들에 영향을 받는다. 이런 요소들을 고려한 정확한 예측을 위해서 다양한 기법들이 사용된다. 최근 인공지능 기술이 화두가 되면서 이를 활용한 주가 예측 시도 또한 이루어지고 있다. 본 논문은 단순히 주식 관련 데이터뿐만 아닌, 거시 경제적 지표 등을 활용한 여러 종류의 데이터를 이용하여 주가에 영향을 미치는 요소에 관한 연구를 제안한다. KOSDAQ을 대상으로 1년 치 종가, 외국인 비율, 금리, 환율 데이터를 다양하게 조합한 후에 딥러닝의 Nonlinear AutoRegressive with eXternal input (NARX) 모델을 활용한다. 이 모델을 통해 1달 치 데이터를 생성하고 각 데이터 조합을 통해 만들어진 예측값을 RMSE를 통해 실제값과 비교, 분석한다. 또한, 은닉층에서 뉴런의 수, 지연 시간을 다양하게 설정하여 RMSE를 비교한다. 분석 결과 뉴런은 10개, 지연 시간은 2로 설정하고, 데이터는 미국, 중국, 유럽, 일본 환율의 조합을 사용할 때 RMSE 0.08을 보이며 가장 낮은 오차를 기록하였다. 본 연구는 환율이 주식에 가장 영향을 많이 미친다는 점과 종가 데이터만 사용했을 때의 RMSE 값인 0.589에서 오차를 낮췄다는 점에 의의가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.