• Title/Summary/Keyword: 거문오름 용암동굴계

Search Result 3, Processing Time 0.023 seconds

Study on Source of Lava Flows Forming the Manjanggul Lava Tube (만장굴 용암동굴을 형성한 용암의 공급지에 관한 연구)

  • Ahn, Ung-San;Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.237-253
    • /
    • 2009
  • The lava flows forming the Manjanggul lava tube are commonly said to have a potential source from the Geomunoreum scoria cone. We inferred the source of lava flows with the Manjanggul lava tube, based on many studies about lava tubes within lava flows of active volcano in the world. We made a lava flow field map from lithofacies, features and latitude of lava surfaces in the northeastern part of Jeju Island, and then examined closely the distribution and mutual relation of lava tubes in each lava flow field. As result, the Geomunoreum lava tube system is divided into a series of master tubes(Utsanjeungul, Bukoreumgul, Daerimdonggul, Manjanggul, Gimnyeonggul, Yongcheondonggul and Dangcheomuldonggul lava tube), a complicated networks of small tubes(Bengdwigul lava tube), and a series of unitary tubes(Gimyeongbilemotgul~Gaeusaemgul lava tube) in Geomunoreum lava flows. Particularly a canyon, 2km in length to NNE direction from the Geomunoreum scoria cone, is interpreted to be collapse trench of lava tube roof that belongs to an upflow part of the master tube in the Geomunoreum lava tube system, according to the location and direction. Accordingly, the source of lava flows, forming the Manjanggul lava tube, is the Geomunoreum scoria cone.

Experimental Study of the Effect of Vibration on the Geomunoreum Lava Tube System in Jeju (제주 거문오름 용암동굴계의 진동영향에 관한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Ahn, Ung-San;Lim, Hyun-Muk;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.327-345
    • /
    • 2020
  • The effects of ground vibration on lava tubes during construction were studied to aid design of management and preservation measures for lava tubes. Ground conditions were assessed by RMR (Rock mass rating) and Q-system classifications for the Geomunoreum lava tubes, and vibration velocity was measured during in situ blasting tests in the Manjanggul and Yongcheondonggul lava tubes. Results indicate that the higher the rock quality, the greater the effect of vibration, although there is no clear linear relationship due to ground heterogeneity. A relationship derived between vibration velocity (PPV) and intensity (dB(V)) on the basis of blasting tests indicates that a vibration level of < 0.285 cm/sec meets the regulatory limit of 0.371 cm/sec and 65 dB(V) during daytime, and 0.285 cm/sec and 60 dB(V) during night. For blasting vibrations, square- and cube-root scaled distances are linearly correlated, with R2 ≥ 0.76. On the basis of this correlation, explosive-charge weights meeting the 0.2 cm/sec vibration criterion for cultural heritage were estimated to be 2.88 kg at 50 m distance, and 11.52 kg at 100 m.

A Study on the Blasting Vibration Characteristics of Geomunoreum Lava Tubes System, Jeju Island (제주 거문오름 용암동굴계에 영향을 미치는 발파진동특성에 대한 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Ahn, Ung-San;Lim, Hyun-Muk;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.103-118
    • /
    • 2021
  • For management and preservation measures of lava tube, it is studied how the blasting vibration by constructions near Geomunoreum lava tubes in Jeju affect lava tube. 11 boreholes were drilled in study area, and in-situ blasting tests were conducted by changing from 0.5 kg to 10 kg charge per delay in those boreholes. The vibration velocity, which meets the regulatory vibration criterion during daytime, was estimated as below 0.276 cm/sec by analyzing the relationship between vibration velocity and vibration level. In addition, SRE and CRE were calculated from the results of in-situ blasting tests, and k-values were shown as 130.04 in SRE, 199.71 in CRE, respectively. Also, n-values were shown as -1.717 in SRE, -1.711 in CRE, respectively. Charge per delay were assessed based on these equations, and charges per delay had ranges of 0.57~7.42 kg/delay in estimation equation of vibration velocity, 0.21~5.29 kg/delay in SRE, and 0.04~5.51 kg/delay in CRE, considering the 0.2 kine vibration criterion for cultural heritage and the 20~100 m distance from vibration source. Additionally, the relationships which meet the criteria of 0.2 kine, were calculated by combining CRE in this study with the result of previous study. Allowable charges per delay, which meet the criteria of 0.2 kine, were evaluated as 1.07 kg/delay in 50 m, 5.13 kg/delay in 100 m and 22.26 kg/delay in 200 m distances. These relationships for each vibration velocity are useful to deduce charge per delay for the ground near Geomunoreum lava tube.