• Title/Summary/Keyword: 거리-도플러 영상

Search Result 18, Processing Time 0.018 seconds

Extraction of Blood Velocity Using FCM and Fuzzy Decision Trees in Doppler Ultrasound Images of Brachial Artery (상완동맥 색조 도플러 초음파 영상에서 FCM과 퍼지 의사 결정 트리를 이용한 혈류 속도 추출)

  • Kim, Kwang Baek;Jung, Young Jin;Nam, Youn Man;Lee, Jae Yeol
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.19-22
    • /
    • 2019
  • 상완동맥은 어깨에서부터 팔꿈치까지 내려오는 상완골의 내측부에 존재하며 혈압을 측정할 때 사용되는 혈관이다. 이 혈관은 골절로 인해 찢어지거나, 또는 혈액순환에 문제가 생겨 혈관이 막히는 경우가 발생한다. 이러한 경우 혈관의 상태를 확인하기 위하여 색조 도플러 초음파 검사를 사용하지만, 사용자에 따라 영상을 통한 판단 기준이 다르다는 문제점이 발생한다. 따라서 본 논문에서는 FCM과 Fuzzy Decision Tree를 이용한 영상 처리를 통해 일관성 있는 판단기준을 세우기 위한 혈류의 속도를 제안한다. 색조 도플러 초음파 영상에서의 상완 동맥을 추출하여 기울기를 이용한 FCM 알고리즘을 통해 소속도를 추출한 뒤 퍼지 룰에 적용하여 의사 결정 트리로 등급을 분류하고 결과적으로 혈류 속도를 추출한다. 색조 도플러 초음파 영상에서 환자의 개인 정보를 보호하기 위해 개인 정보 영역을 제거하여 ROI 영역을 추출하고 ROI 영역을 이진화를 통하여 상완동맥이 있는 영역을 추출한다. 이진화 된 ROI 영역에서 혈관 영상의 혈류 방향으로의 무게중심을 설정하고 각각의 픽셀과 무게중심 선과의 거리를 이용하여 소속도를 추출한 후 FCM을 사용하여 최적의 기울기를 선정한다. FCM을 통해 추출한 최종 소속도를 이용하여 퍼지 룰에 적용한 뒤 계산된 T-norm과 소속도의 분산을 이용하여 의사 결정 트리를 형성 트리의 단말 노드들은 각 픽셀을 분류한다. 분류되어진 데이터들의 노드별 소속도 평균을 구한 뒤 디퍼지화를 통해 COG(Center of Gravity)를 계산한다. 마지막으로 그 값을 이용하여 혈류 속도에 영향을 미치는 정도를 계산한 뒤 최종 혈류의 속도를 제안한다.

  • PDF

Comparisons of ISAR Imaging Methods for Maritime Targets with Real Measured Radar Data (해상 표적의 실제 레이다 측정 데이터를 이용한 ISAR 영상 형성 기법 성능 비교)

  • Kang, Byung-Soo;Lee, Myung-Jun;Ryu, Bo-Hyun;Baek, Jin-Hyeok;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.740-748
    • /
    • 2017
  • In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.

High Resolution Forward-Looking Collision Avoidance Automotive Radar Using Stepped-Frequency Pulsed-Doppler(SFPD) Technique (계단 주파수 변조된 펄스 도플러 기법을 이용한 고해상도 전방 충돌 회피용 차량 레이다 성능 분석)

  • Woo, Sung-Chul;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.784-790
    • /
    • 2009
  • A forward-looking automotive radar typically utilizes the frequency modulated continuous wave(FMCW) or pulsed-Doppler waveform for the Information acquisition of the target range and velocity. In order to obtain the high resolution target information, however, a narrow pulse width and wide bandwidth are inherently required, thus resulting in high peak power and high speed digital converter processing. In this paper, a stepped-frequency pulsed-Doppler(SFPD) waveform algorithm is proposed for high resolution forward looking automotive radar application. The performance of the proposed SFPD waveform technique is analyzed and compared with the conventional FMCW and PD method. Since this technique can be used for the high resolution target imaging with arbitrary range and Doppler resolution, it is expected to be useful In automotive radar target classification for the precision collision avoidance applications in the future.

Radar Image Extraction Scheme for FMCW Radar-Based Human Motion Indication (FMCW 레이다 기반 휴먼 모션 인지용 레이다 영상 추출 기법)

  • Hyun, Eugin;Jin, Young-Seok;Jeon, Hyeong-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.411-414
    • /
    • 2018
  • In this paper, we propose a radar image extraction scheme for frequency modulated continuous wave radar-based human motion indication. We extracted three-dimensional(3D) range-velocity-angle spectra and generated three micro-profile images by compressing the 3D images in all three directions in every frame. Furthermore, we used body echo suppression to make use of the weak reelection such as in hands and arms. By applying the complete images to classifiers, various human motions can be indicated.

Range-Doppler Clustering of Radar Data for Detecting Moving Objects (이동물체 탐지를 위한 레이다 데이터의 거리-도플러 클러스터링 기법)

  • Kim, Seongjoon;Yang, Dongwon;Jung, Younghun;Kim, Sujin;Yoon, Joohong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.810-820
    • /
    • 2014
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance are reported. In near field, several hits per an object are generated after signal processing of Radar data. Hence, clustering is an essential technique to estimate their shapes and positions precisely. This paper proposes a method of grouping hits in range-doppler domains into clusters which represent each object, according to the pre-defined rules. The rules are based on the perceptual cues to separate hits by object. The morphological connectedness between hits and the characteristics of SNR distribution of hits are adopted as the perceptual cues for clustering. In various simulations for the performance assessment, the proposed method yielded more effective performance than other techniques.

An Efficient Signal Processor for Interferometric Synthetic Aperture Radar Altimeter (레이더 간섭 고도계 처리 기법 개발)

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.128-129
    • /
    • 2010
  • 기존의 고도계는 레이더 특성에 의해 직하부의 높이 값을 정밀하게 관측할 수 없었다. 그러나 레이더 간섭 고도계는 SAR(Synthetic Aperture Radar) 영상의 칩 펄스(Chirp Pulse)를 이용한 고정밀 경사거리(Slant Range Distance)관측, 도플러 효과를 이용한 고정밀 경사각(Squint Angle)의 관측 및 레이더 간섭기법(SAR Interferometry)을 이용한 고정밀 관측각(Look Angle)의 관측을 가능하게 하였다. 이 연구의 목적은 레이더 간섭 고도계의 효율적인 신호처리 기법의 개발에 있다.

  • PDF

Ground Moving Target Displacement Compensation and Performance Analysis in the DPCA Based SAR-GMTI System (DPCA 기법을 이용한 SAR-GMTI 시스템에서 지상 이동 표적 오차 보상 기법 및 성능 분석)

  • Jung, Jae-Hoon;Jung, Jung-Soo;Jung, Chul-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1138-1144
    • /
    • 2009
  • The velocity and acceleration of the ground moving target can cause the target position to be displaced and defocused in the SAR image. In this paper, the displacement compensation scheme is presented to correct the displaced position and defocused moving target image in the DPCA based SAR-GMTI system. The influence of the ground moving target due to the velocity and acceleration is analyzed in range and azimuth directions, and its compensation method is presented with the simulation results. The performance of the proposed method is compared with respect to the estimated velocity and defocused quantity in both range and azimuth directions.

Synthetic Aperture Radar Target Detection Using Multi-Cell Averaging CFAR Scheme (다중 셀 평균 기반 CFAR 검출을 이용한 SAR 영상 표적 탐지 기법)

  • Song, Woo-Young;Rho, Soo-Hyun;Jung, Chul-Ho;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.164-169
    • /
    • 2010
  • Since the range and Doppler resolution of the synthetic aperture radar(SAR) image becomes very high, the target detection accuracy can be significantly increased, but the computational burden is also increased. The conventional single-cell based CFAR detector performs the target detection on every single cell basis, thus it causes the serious increment of the computational load. In this paper, the improved two-step MCA-CFAR detector is proposed for the improvement of the target detection as well as the reduction of computational load: the first step is to use the MCA-CFAR, and the second step is to use the single-cell based CFAR detection in the expected target area for final decision. The performance of the proposed algorithm is compared with the conventional single-cell based CFAR and MCA-CFAR on SAR images.

A Study on the Synthetic Aperture Radar System Motion Compensation Technique (SAR(Synthetic Aperture Radar)시스템 요동보상기법 연구)

  • Kang, Eun-Kyun;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • In this paper, the image formation by the motion compensation technique for Synthetic Aperture Radar system(SAR) were realized through the computer simulation. The motion compensation technique performed image data with the range compression, the compensation procedure, the azimuth compensation and the noise elimination procedure. The range compression procedure transform the SAR raw data into the frequency domain and correlate with the range reference function and then inversely transform into the time domain. The compensation procedure contain the aircraft fluctuations compensation and the radar image degrading effect elimination procedure which was caused by image formation algorithm itself. The aircraft fluctuations compensation procedure perform the first stage which correct the phase angle and the second stage which calculate the Doppler frequency and determine the coordinate of the received signal. The radar image degrading effect elimination procedure also perform range migration compensation and the image defocussing effect compensation. The azimuth compression procedure transform the compensation data to the frequency domain and correlate with the azimuth reference function. The azimuth correlated data are inversely transformed to the time domain which is called SAR image data. When the above procedure were completed, the image data contains the received signals mixed with noise. The threshold technique was applied to elimination the noise from the mixed image data.

GEOCODING OF SAR IMAGE USING THE ORBIT AND ATTITUDE DETERMINATION OF RADARSAT (RADARSAT 위성의 궤도결정과 자세결정을 이용한 SAR 영상의 자리매김)

  • 소진욱;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.183-196
    • /
    • 1998
  • The Synthetic Aperture Radar(SAR) image and the Digital Elevation Model(DEM) of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is put in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates), but in this reserch the inverse method(mapping from geographic coordinates to image coordinates) is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between space-borne radar and target. And the relative motion is described in ECIC(earth-centered-initial coordinates) using Doppler equation and signal acquisition geometry.

  • PDF