• Title/Summary/Keyword: 거리 오차

Search Result 1,350, Processing Time 0.031 seconds

The Error Structure of the Radar Reflectivity and the Correction of the Range Dependent Error (레이더 반사도 자료의 오차구조 및 거리오차 보정)

  • Yoon, Jung-Soo;Yoo, Chul-Sang;Kim, Jung-Ho;Jun, Chang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.468-468
    • /
    • 2012
  • 레이더 강우를 적극적으로 활용하기 위해서는 레이더 강우에 포함된 각 오차들에 대한 특성을 파악하고 정량화하는 것이 무엇보다 중요하다. 본 연구에서는 레이더 반사도의 오차구조를 파악하고 그러한 오차구조를 갖는 반사도로부터 표출한 CAPPI의 거리오차를 보정하였다. 이러한 거리오차 파악을 위해서는 참 값으로 가정할 수 있는 기준 반사도가 필요하며 본 연구에서는 VPR 모형으로부터 기준 반사도인 지상 반사도를 추정하였다. 그 결과 일정한 VPR 모형을 적용하게 되면 거리와 상관없이 오차는 일정하고 오직 고도에 의해서만 영향을 받는다. 그러나 일정 고도에서의 반사도 표출 방법인 CAPPI는 지구곡률효과로 인해 실제로 거리가 멀어 질수록 관측 고도가 높아진다. 이에 따라서 오차는 거리가 멀어질수록 커지게 된다. 이는 실제 호우사상에 적용한 결과에서도 유사하게 나타났다. 강릉 기상 레이더의 경우 1.5km CAPPI는 약 100km까지 1.5km 고도를 유지하다 그 이상부터 고도가 점점 높아진다. CAPPI의 오차를 거리에 따라 분포시킨 결과에서도 100km까지는 어느 정도 일정한 오차를 보이다 그 이상부터 오차가 점점 증가하는 것으로 나타났다. CAPPI의 오차를 2차원 평면으로 나타낸 결과에서도 호우가 전반적으로 퍼져있는 시점부터 원거리에서 큰 오차를 보이고 있다. 이는 오차의 평균에서 더욱 명확히 나타났다. 이와 같이 CAPPI는 원거리 자료에서 오차가 크게 나타나고 있다. 이에 CAPPI에 포함된 거리오차를 VPR 모형을 이용하여 보정하였다. 그 결과 원거리에서의 오차가 감소하였음을 확인하였다.

  • PDF

Estimation Techniques of Hydrological Uncertainties on Rainfall Radar Measurement (강우레이더 관측의 수문학적 불확실도 산정 기법)

  • Hwang, Seok Hwan;Cho, Hyo Seob;Lee, Keon Haeng;Hyun, Myung Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.78-78
    • /
    • 2017
  • 강우레이더 관측의 정확도는, 호우의 강도나 형태와 같은 기상학적 조건(변동 오차 요소) 외에도, 관측 지점의 레이더로부터의 거리, 고도, 관측유역의 형태나 크기 등 다양한 관측환경 조건(고정 오차 요소)에 의해서도 달라질 수 있기 때문에, 강우레이더 관측의 오차 성분을 정량화할 필요가 있다. 본 연구에서는 거리와 고도에 의한 오차 특성을 이중편파 변수의 특성을 이용하여 실증적으로 분석하였고, 이를 통해 감쇠의 영향과 산지효과(또는 지형효과)로 인한 오차 규모를 정량적으로 산정 비교하였다. 거리가 멀어짐에 따라 고도도 높아지기 때문에 QPE 불확실도의 거리와 고도에 따른 성분을 구분하는 것은 매우 어려운데, 거리에 대한 불확실도 성분이 매우 작은 R(KDP)를 이용한다면 효과적으로 분리가 가능하다. 이러한 원리를 이용하여, 관측 거리에 따른 오차가 매우 작은 R(KDP)를 기준으로 관측 거리에 따른 오차와 고도에 따른 오차를 분리하여 표준화[Z-score] 하였다. R(Z)의 경우는 관측 고도와 거리에 따른 오차가 중첩되어 나타나나, R(KDP)는 거리에 따른 오차는 거의 나타나지 않으므로 이를 기본 가정으로 하여 R(Z)와 R(KDP) 관계로부터 관측 고도에 따른 오차 성분만 분리하였다. 분리 결과, 관측 거리에 따른 표준 오차의 경우 100km 까지는 대략 10%(0.1) 이하로 나타났으나, 150km 이상에서는 30%(0.3)를 초과하는 것으로 나타났다. 관측 고도에 따른 표준 오차의 경우 2~3번째 고도각 까지는 대략10%(0.1) 이하로 나타났으나, 3번째 고도각 이상에서는 20%(0.2), 4번째 고도각 이상에서는 50%(0.5)를 초과하는 것으로 나타나, 고도에 의한 영향이 거리에 의한 영향보다 민감하게 나타났다. 1번째 고도각에서는, 100km 이내 근거리에서 관측 거리가 가까워질수록 오차가 증가하는 경향을 보이는데, 이는 저고도 빔 간섭(빔 차폐) 등의 영향으로 추정되었다.

  • PDF

Mesh Simplification Algorithm Using Differential Error Metric (미분 오차 척도를 이용한 메쉬 간략화 알고리즘)

  • 김수균;김선정;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.288-296
    • /
    • 2004
  • This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even though it has a small distance error measured in distance error metric. This paper proposes a new differential error metric that results in unifying a distance metric and its first and second order differentials, which become tangent vector and curvature metric. Since discrete surfaces may be considered as piecewise linear approximation of unknown smooth surfaces, theses differentials can be estimated and we can construct new concept of differential error metric for discrete surfaces with them. For our simplification algorithm based on iterative edge collapses, this differential error metric can assign the new vertex position maintaining the geometry of an original appearance. In this paper, we clearly show that our simplified results have better quality and smaller geometry error than others.

A Study on the Distance Error Correction of Maritime Object Detection System (해상물체탐지시스템 거리오차 보정에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Maritime object detection systems, which detects small maritime obstacles such as fish farm buoys and visualizes distance and direction, is equipped with a 3-axis gimbal to compensate for errors caused by hull motion, but there is a limit to distance error corrections necessitated by the vertical movement of the camera and the maritime object due to wave motions. Therefore, in this study, the distance error of maritime object detection systems caused by the movement of the water surface according to the external environment is analyzed and corrected using average filter and moving average filter. Random numbers following a Gaussian standard normal distribution were added to or subtracted from the image coordinates to reproduce the rise or fall of the buoy under irregular waves. The distance calculated according to the change of image coordinates, the predicted distance through the average filter and the moving average filter, and the actual distance measured by laser distance meter were compared. In phases 1 and 2, the error rate increased to a maximum of 98.5% due to the changes of image coordinates due to irregular waves, but the error rate decreased to 16.3% with the moving average filter. This error correction capability was better than with the average filter, but there was a limit due to failure to respond to the distance change. Therefore, it is considered that use of the moving average filter to correct the distance error of the maritime object detection system will enhance responses to the real-time distance change and greatly improve the error rate.

Compensation Algorithm of DCO Cumulative Error in the GNSS Signal Generator (GNSS 신호생성기에서 DCO 누적오차 보상 알고리즘)

  • Kim, Taehee;Sin, Cheonsig;Kim, Jaehoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • In this paper, we developed the signal generator of GNSS navigation signals and analysis the performance of DCO(Digitally Clock Oscillator) compensation algorithm for cumulative distance error thorough simulation. In general, To generate a GNSS signal calculates the Doppler and Initial Pseudorange by using the location information of the receiver and the satellite. The GNSS signal generator generates a signal by determine the carrier and code output frequency using the Doppler information which is calculated as a function of time. The output frequency of the carrier and code would be used the DCO scheme. At this time, It extract the bit and code information on a for each sample by accumulating the DCO. an error of Pseudorange is generated by the cumulative error of the DCO. If Pseudorange error occurs, so that the influence to and operation of the receiver. Therefore, in this paper, we implemented the accumulated error compensation algorithm of the DCO to remove the accumulated error components DCO thereof, Pseudorange accumulated error is removed through the experiment, it was confirmed to be a high accuracy can be operated.

The Influence of Eccentric Error in Horizontal Angle Measurement (수평각관측에 있어서 구심오차가 관측치에 미치는 영향)

  • 이계학
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.55-61
    • /
    • 1991
  • The accidential errors of horizontal angles are influenced by sighting, reading and eccentric errors etc. This paper deals with the influence of eccentric error by the formula of theory and evaluation, and actually testing measurement. The results show that the eccentric error is calculated through the sighting distance, observed angle, eccentric distance and angle. And then, three repeating method is of practical use, and also, eccentric error is able to evaluate through the sighting distance and observed angle in according to performance of each instrument.

  • PDF

A Gradient Method Based Near-Field Range Estimation Technique Robust to Direction-of-Arrival Error (방위각 오차에 강인한 경사법 기반 근접장 표적 거리 추정 기법)

  • Kim, Joon-Doo;Cho, Chom-Gun;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.130-136
    • /
    • 2012
  • In this paper, we propose a near-field range estimation method for a uniform linear array that can calibrate bearing estimation error which give a bad influence on a range estimation process. When a range is fixed, the bearing error is calibrated to maximize the beamformer output by the proposed algorithm based on the gradient method. Simulation results show that the proposed algorithm can compensate the bearing error which is less than the mainlobe beamwidth so that reduce the range estimation error as similar as the case of no bearing error.

The Basic Study of Position Recognition Cow-teats Used Scanning Range Finder (레이저스캔 센서를 이용한 유두위치인식에 관한 기초연구)

  • Kim, Woong
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study was conducted to verify the applicability of robot milking system through acquisition and analysis of model teat's position information using scanning range finder (SRF). Model teats, same size and shape as real teats, were designed to analyze the properties according to the material, distance error and angle error of the sensor. In addition, 2-dimensional distance information of each teats was obtained at same time with 4 teat models and the result were as follows. 1. In the case of the fingers on the experiment for selection of materials for teat model, the distance error was from 4.3 mm to 1.3 mm, average was 2.8 mm as a minimum record. In the case of rubber material, average distance error was 4.3 mm. So, this material was considered to be a most suitable model. 2. The distance error was maximum at 100 mm distance. The more distance increased, the less error increased up to 300 mm. Then the error increased after 300 mm and decreased again. 3. The maximum angle error of 10.1 mm was measured at $170^{\circ}$, in case of $70^{\circ}$ the error was 0.2 mm as a minimum value. There was no specific tendency to error of angle. 4. In the 2-dimensional location error for 4 teat models, distance error was 3.8 mm as minimum and 7.2 mm as maximum. The angle error was $1.2^{\circ}$ as maximum. All of errors were included within the accuracy of sensor, the robot milking system was considered to be applicable to measure the distance of teats due to the measuring velocity of SRF and the hole size of teat-cup.

Range Error of Monopulse Radar according to the Engagement Angle of Cross-Eye Jammer (크로스아이 재머의 조우각에 따른 모노펄스 레이다의 거리 오차)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.30-35
    • /
    • 2020
  • In this paper, we analyzed the tracking error for the monopulse radar by controlling the phase difference, amplitude ratio and engagement angle of the cross-eye jammer. Cross-eye jamming is an important jamming method for monopulse radars, which causes a displacement in the radar receiving antenna input and misleads the radar's tracking angle. As a result of analyzing the tracking distance error of the radar while changing the engagement angle between the monopulse radar and jammer, the maximum distance error occurs when the engagement angle is 0° and the phase difference is 180°. It was confirmed that the error decreased to 70% or less of the maximum distance error into 45°~135°. In order to increase the efficiency of jammers, it is necessary to study rotary jammers or multi-channel jammers. This study will be very useful for the design of cross-eye jammers for aircraft and ships.

A Development of the Obstacle Error Correction Algorithm using PSD And Electronic Compass (PSD와 전자나침반을 이용한 장애물 에러 보정 알고리즘 개발)

  • Lim, Shin-Taek;Chong, Kil-Do;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.433-434
    • /
    • 2008
  • 이 논문은 실내에서 로봇의 주행 시 생기는 오차를 수정하는 것이다. 실내에 있는 장애물(문턱)을 넘을 경우 슬립에 의하여 주행거리와 실제거리의 오차가 생기고 또한 헤드 앵글 값이 변화함에 따라서 차후 엄청난 주행 오차를 발생시키게 된다. 그에 따라 PSD 센서를 이용하여 장애물을 감지하고 감지 후 장애물을 넘을 수 있도록 모터를 제어한다. 또한 PSD를 이용하여 장애물의 크기를 계산한 후 로봇이 장애물을 넘는 동안에 엔코더 값을 받아 들여서 장애물을 넘는 동안에 로봇이 실제 이동한 거리를 측정한다. 그리고 장애물을 넘은 후에 PSD로 계산한 장애물의 크기 값과 엔코더에서 받아들인 값을 비교하여 거리오차를 수정한다. 또한 전자컴퍼스를 이용하여 장애물을 넘기 전에 로봇의 헤드 앵글 값을 구하고, 장애물을 넘은 후에 로봇의 헤드 앵글 값을 구하여 두 개의 값을 비교한다. 두 개의 값의 차이를 측정하여 수정함으로써 헤드 앵글을 오차를 수정할 수 있다.

  • PDF