• Title/Summary/Keyword: 거리 영상

Search Result 2,197, Processing Time 0.028 seconds

Comparative Analysis of Accuracy between Computerized Tomography and Cephalogram for 3-Dimensional Measurement of Maxillofacial Structure (악안면 3차원 계측시 컴퓨터 단층촬영과 두부 방사선 규격사진의 정확성 비교 분석)

  • Paek, Jong-Su;Song, Jae-Chul;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.123-137
    • /
    • 2001
  • Background: The purpose of this study is to evaluate the accuracy of measurements obtained from 3-dimensional computerized tomography and 3-dimensional cephalogram constructed by using the frontal and lateral cephalogram of six human dry skulls. Materials and Methods: After CT scans and each cephalograms were taken, 3-dimensional coordinates (X, Y, Z) of landmarks were obtained using computer programs. In this study, the accuracy of both methods were determined by means of 14 linear measurements compare with caliper measurements. Results: The standard deviation of landmarks of 3-dimensional CT and 3-dimensional cephalogram were 0.23 mm, and 0.30 mm in X axis, 0.27 mm and 0.25 mm in Y axis, and 0.27 mm and 0.31 mm in Z axis. In both methods, the standard deviation were less than 0.5 mm in all landmarks, and the most of landmarks showed less than 1 mm in range. Concerning the accuracy, the mean difference between 3-dimensional CT and manual measurements was 0.33 mm, and 1.13 mm between 3-dimensional cephalogram and manual measurements. The distance between RGo and LGo showed the largest difference (2.03 mm). There were highly significant, and large correlation with manual measurements in both methods (p<0.01). Conclusion: It is concluded that closeness of repeated measures to each skulls reveal the precision of both methods. Computerized tomography and cephalogram for 3-dimensional measurement of maxillofacial structure are equivalent in quality to caliper measurements.

  • PDF

Data Processing using Anisotropic Analysis for the Long-offset Marine Seismic Data of the East Sea, Korea (동해 해역 원거리 해양탄성파 탐사자료의 이방성 분석을 이용한 전산처리)

  • Joo, Yonghwan;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The acquisition and processing of long-offset data are essential for imaging deep geological structures in marine seismic surveys. It is challenging to derive an accurate subsurface image by employing conventional data processing to long-offset data owing to the normal moveout (NMO) stretch and non-hyperbolic moveout phenomena induced by seismic anisotropy. In 2017, the Korea Institute of Geoscience and Mineral Resources conducted a simultaneous two-dimensional multichannel streamer and ocean-bottom seismic survey using a 5.7-km streamer and an ocean-bottom seismometer to identify the deep geological structure of the Ulleung Basin. Herein, the actual geological subsurface structure was obtained via the sequential iterative updating of the velocity and anisotropic parameters of the long-offset data obtained using a multichannel streamer, and anisotropic prestack Kirchhoff migration was performed using the updated velocity and anisotropic parameters as input parameters. As a result, the reflection energy in the long-offset traces, which showed non-hyperbolic moveout owing to seismic anisotropy, was well aligned horizontally and NMO stretches were also reduced. Thus, a more precise and accurate migrated image was obtained, minimizing the distortion of reflectors and mispositioned reflection energy.

Performance Verification of WAVE Communication Technology for Railway Application (차량용 무선통신기술(WAVE)의 철도 적용을 위한 성능검증)

  • Kim, Keum-Bee;Ryu, Sang-Hwan;Choi, Kyu-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.456-467
    • /
    • 2016
  • Wireless Access in Vehicular Environments (WAVE) communication technology, which provides vehicleto-vehicle and vehicle-to-infrastructure communication and offers safe and convenient service, has been developed for application to an Intelligent Transport System (ITS). This paper provides field test results on a study of the feasibility of WAVE technology application to railway communication systems. A test railway communication system based on WAVE technology has been built along the Daebul line and a newly developed EMU. Field tests have been carried out according to the communication function requirements for LTE - R. The test results show that the railway communication system based on WAVE technology meets the functional requirements: maximum transmission length is 730m, maximum transfer delay is 5.69ms, and maximum interruption time is 1.36s; other tests including throughput test, video data transmission test, VoIP data test, and channel switching test also produced results that meets the functional requirements. These results suggest that WAVE technology can be applied to the railway communication system, enabling Vehicle-to-Wayside communication.

The Study on Applicability of Semi-conductive Compound for Radioactive Source Tracing Dosimeter in NDT Field (비파괴 검사 분야의 방사성 동위원소 위치추적을 위한 반도체 화합물의 적용 가능성 연구)

  • Shin, Yohan;Han, Moojae;Jung, Jaehoon;Kim, Kyotae;Heo, Yeji;Lee, Deukhee;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • Radiation safety management is being considered very important since radioactive isotopes such as Co-60 and Ir-192 are widely used in fields such as non-destructive test(NDT). In this study, the applicability of Mercury(II) Iodide($HgI_2$) source for tracing system was evaluated. To make sure the unit cell sensor's reliability, we evaluated the electrical properties of the sensor made with $HgI_2$, and then position dependence of the sensor was analyzed and compared with the dose distribution from the planning system. As a result of the evaluation, high reliability of the sensor was shown through the linearity of R-sq > 0.990 and reproducibility of CV < 0.015. In the position dependence evaluation, the maximum value was measured at the isocenter of the sensor and gradually decreased according to the distance. However, the dose distribution data from the planning system was turned out that has difference with that of the sensor up to 30%. This seems to come from the difference between single-point measuring based planning system and area measuring based sensor.

Laryngeal height and voice characteristics in children with autism spectrum disorders (자폐스펙트럼장애 아동의 후두 높이 및 음성 특성)

  • Lee, Jung-Hun;Kim, Go-Woon;Kim, Seong-Tae
    • Phonetics and Speech Sciences
    • /
    • v.13 no.2
    • /
    • pp.91-101
    • /
    • 2021
  • The purpose of this study was to investigate laryngeal characteristics in children with autism spectrum disorders (ASD). A total of 50 children participated, including eight children aged 2 to 4 years old diagnosed with ASD and 42 normal controls at the same age. All children recorded X-ray images of the midsagittal plane of the cervical spine and larynx, and compared the laryngeal positions of ASD and control. In addition, samples of children with vowel prolongation were collected and analyzed for acoustic parameters. X-rays showed that the height of the hyoid bone in the normal group was the lowest at 3 years of age, and ascended at 4 years of age. Nevertheless, the distance from the external acoustic meatus to the hyoid bone was longest at age 4. 4-year-olds with explosive language development showed laryngeal height elevation and anteriorization. In contrast, the hyoid height of the ASD group of all ages was lower than that of the control group, and there was no difference in the hyoid position between the ages. As a result of acoustic evaluation, PFR, vFo, and vAm were significantly higher ASD than control. Low laryngeal height of ASD children may be associated with delayed language development. PFR, vFo, and vAm seem to be voice markers showing the difference between normal and ASD children.

Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation (선박안전 운항을 위한 이진 분할 알고리즘 기반 해상 객체 검출 하드웨어 가속기 설계 및 구현)

  • Lee, Hyo-Chan;Song, Hyun-hak;Lee, Sung-ju;Jeon, Ho-seok;Kim, Hyo-Sung;Im, Tae-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1331-1340
    • /
    • 2020
  • Object detection in maritime means that the captain detects floating objects that has a risk of colliding with the ship using the computer automatically and as accurately as human eyes. In conventional ships, the presence and distance of objects are determined through radar waves. However, it cannot identify the shape and type. In contrast, with the development of AI, cameras help accurately identify obstacles on the sea route with excellent performance in detecting or recognizing objects. The computer must calculate high-volume pixels to analyze digital images. However, the CPU is specialized for sequential processing; the processing speed is very slow, and smooth service support or security is not guaranteed. Accordingly, this study developed maritime object detection software and implemented it with FPGA to accelerate the processing of large-scale computations. Additionally, the system implementation was improved through embedded boards and FPGA interface, achieving 30 times faster performance than the existing algorithm and a three-times faster entire system.

Development of flow measurement method using drones in flood season (I) - aerial photogrammetry technique (드론을 이용한 홍수기 유량측정방법 개발(I) - 항공사진측량 기법 적용)

  • Lee, Tae Hee;Lim, Hyeokjin;Yun, Seong Hak;Kang, Jong Wan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1049-1057
    • /
    • 2020
  • This study aimed to develop a flow measurement method using drone in flood season. Measuring flow in all branches is difficult to conduct annually due to budget and labor limitation, safety and river works. Especially when heavy rain like storm comes, changes in stage-discharge relationship should be reviewed; however, it is usually impeded by the aforementioned issues. To solve the problem, it developed a simple measuring method with a minimum of labor and time. A numeric map and numeric orthophoto coordinate of South Korea are mostly based on Transverse Mercator Projection (TM) in accordance with rectangular coordinate system and use World Geodetic Reference System 1980 (GRS80) oval figure for conversion. Applying a concept of aerial photogrammetry, it located four visible Ground Control Points (GCP) near the river at Uijeongbu-si (Singok Bridge) and Yeongdong-gun (Youngdong 2nd Bridge) station and measured the coordinates using VRS DGPS. Hovering at a same level, drones took orthophoto of water surface at an interval of 3 seconds. It defined the pictures with GRS80 TM coordinate system, a rectangular coordinate system and then conducted an orthometric correction using GCP coordinates. According to X and Y coordinate analysis, it estimated the distance between the floating positions at 3 seconds-intervals and calculated the flow through the flow area according to the flow path. This study attested applicability of the flow measurement method using drone in flood season by applying the rectangular coordinate system based on the concept of aerial photogrammetry.

A Study on the Formation and Landscape Characteristics of Imperial Tombs Created in the Qing Dynasty, China (중국 청대(淸代) 황가능침원(皇家陵寢園)의 조형 및 경관적 특성)

  • RHO, Jaehyun;WEI, Hang
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.5-34
    • /
    • 2022
  • The purpose of this study is to investigate the unique contrasting landscape characteristics of imperial tombs of Qing dynasty by examining the characteristics of facility layout in which location, Feng shui, and siblings are harmonized with the 12 Qing Dynasty Hwanggyeongchim. Through literature surveys, field observation and interviews, videos and drawing comparison, and inductive contrast analysis, the contrasting landscape characteristics of imperial tombs in the Qing Dynasty were analyzed by classifying them into natural environment, location, Feng shui, and formal esthetics. As a result, the characteristics of the location type and the layout plan of the Qing dynasty imperial tombs were derived from the analysis of Feng shui shape, axis extension distance along the midaxial line, the width of the ridge, the formality of the facility layout according to the difference between the height of the starting point and the end point, the leftward direction of the tomb, and the space ratio of the 'entry space' - 'ritual space' - 'burial mound space', etc. In addition, it was possible to derive the facility arrangement characteristics of tombstones through the analysis of the types and the arrangement order of tombs facilities, as well as the distribution, quantity and types of stone figures, while also revealing some contrasting characteristics different from those of the Ming Dynasty. In addition, it was confirmed that the spatial division effect through the water system and the view effect of the view from the midaxial line and the vista are the representative view effect found in the Qing Dynasty imperial tombs along with the density contrast.

The Effect of Communication Distance and Number of Peripheral on Data Error Rate When Transmitting Medical Data Based on Bluetooth Low Energy (저 전력 블루투스 기반으로 의료데이터 전송 시 통신 거리와 연동 장치의 수가 데이터 손실률에 미치는 영향)

  • Park, Young-Sang;Son, ByeongJin;Son, Jaebum;Lee, Hoyul;Jeong, Yoosoo;Song, Chanho;Jung, Euisung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.259-267
    • /
    • 2021
  • Recently, the market for personal health care and medical devices based on Bluetooth Low Energy(BLE) has grown rapidly. BLE is being used in various medical data communication devices based on low power consumption and universal compatibility. However, since data errors occurring in the transmission of medical data can lead to medical accidents, it is necessary to analyze the causes of errors and study methods to reduce data error. In this paper, the minimum communication speed to be used in medical devices was set to at least 800 byte/sec based on the wireless electrocardiography regulations of the Ministry of Food and Drug Safety. And the data loss rate was tested when data was transmitted at a speed higher than 800 byte/sec. The factors that cause communication data error were classified, and the relationship between each factor and the data error rate was analyzed through experiments. When there were two or more activated peripherals connected to the central, data error occurred due to channel hopping and bottleneck, and the data error rate increased in proportion to the communication distance and the number of activated peripherals. Through this experiment, when the BLE is used in a medical device that intermittently transmits biosignal data, the risk of a medical accident is predicted to be low if the number of peripherals is 3 or less. But, it was determined that BLE would not be suitable for the development of a biosignal measuring device that must be continuously transmitted in real time, such as an electrocardiogram.

Relationship between Carotid Intima Media Thickness and Appendicular Skeletal Muscle Index according to Gender (성별에 따른 경동맥 내중막두께와 사지근육량지수와의 관련성)

  • Yang, Sung-Hee;Lee, Hee-Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.309-317
    • /
    • 2022
  • It is reported that social distancing caused by the corona pandemic has resulted in a decrease in physical activity, and a decrease in muscle mass due to this increases the risk of vascular disease. Therefore, in this study, the risk of carotid intima media thickness was evaluated by measuring the thickness of CIMT, and the differences in variables according to gender were analyzed. From January 2022 to May 2022, a total of 220 people (121 males, 99 females) who performed blood tests, carotid ultrasound, and body composition analysis among those who visited the health check-up center of Busan H Hospital were included in this study. Significant differences in risk factors according to gender were analyzed using the chi-square test. The cut-off values of variables that can predict the risk of carotid intima media thickness were calculated, and the accuracy was evaluated by calculating the area under the curve, sensitivity, and specificity. As a result of the difference analysis, the higher the total cholesterol in men and the appendicular skeletal muscle index in women, the higher the risk of carotid intima media thickness. The cut-off value for predicting the risk of carotid intima media thickness was calculated to be greater than 199 mg/dL of total cholesterol in the male group and less than 5.9 kg/m2 of the appendicular skeletal muscle index in the female group. As a result of this study, the higher the total cholesterol in men and the lower the appendicular skeletal muscle index in women, the higher the risk of increased CIMT. Therefore, in women, the appendicular skeletal muscle index is expected to serve as an indicator to predict and prevent vascular changes at an early stage.