• Title/Summary/Keyword: 거리의 역자승 법칙

Search Result 12, Processing Time 0.023 seconds

A Study on Efficiency Error in Distance Inverse Square Law using Cylinder NaI(Tl) Scintillation Detector (원통형 NaI(Tl) 신틸레이션 검출기를 이용한 거리의 역자승 법칙에서 효율 오류에 대한 연구)

  • Lee, Samyol;Yoon, Jungran;Ro, TaeIk
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.333-338
    • /
    • 2013
  • Generally, it's known fact that intensity of radioactivity satisfies inverse-square law. However, the law was dissatisfied with practical experiment because of limited shape of scintillation detector. Especially, in the case of near distance between the surface of detector and the radioactive source, the difference grows larger. In the present study, reason of this difference was confirmed by experiment with $2^{{\prime}{\prime}}{\times}2^{{\prime}{\prime}}{\phi}$ NaI(Tl) scintillation detector and $^{60}Co$(1.174 MeV, 1.333 MeV)and $^{137}Cs$(0.662 MeV) gamma ray sources. From the experiment, the correction coefficient was obtained with gamma ray detection efficiency and geometrical volume. In the result of the present study, the efficiency difference of the detector was corrected with the coefficient. In the present result, we obtained that the inverse-square law experiment have to consider the efficiency and geometrical value of the detector.

Relationship between the Distribution of Space doses in X-ray Rooms and the "Inverse Square Law of Distance" (X선 촬영실 내 공간선량의 분포와 거리 역자승 법칙과의 관련성)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.301-307
    • /
    • 2013
  • In the present study, space doses generated during X-ray radiography of hand, head, and abdomen, etc. were examined and whether the intensity of space doses of scattering rays is attenuated by the "inverse square law of distance" was figured out. First, the space doses of X-ray with small amounts of generated scattering rays such as hand radiography were mostly attenuated by the "inverse square law of distance" and were not detected at all at a distance of 2m. Second, the space doses of X-ray with large amounts of generated scattering rays such as head or abdomen radiography attenuated in higher rates than the rates under the "inverse square law of distance" at distances ranging from 30cm to 1m from the center of the irradiation field and were attenuated by the "inverse square law of distance" at distances ranging from 1m to 2m. Therefore, in X-ray rooms, the subject should be at least 2m away from the center of the irradiation field in the case of hand radiography and X-ray exposure prevention actions using protective devices are required in the entire spaces of the X-ray rooms in the case of head or abdomen radiography.

The Study About Attenuation of Scatter Ray According to Distance Inverse Square Law at General Projection (일반촬영 시 거리역자승법칙에 따른 산란선 감약에 관한 연구)

  • Jeon, Min-Cheol;Lim, Hyun-Soo;Han, Man-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.183-188
    • /
    • 2011
  • We studied the optimal location where the radiation dose of radiological technologists is minimally measured. The measured scatter dose has been compared with the distance inverse square law. We measured the primary X-ray with different tube conditions (60, 70, 81 and 90 kVp) and distances (60, 120 and 180 cm). The scatter ray has been measured with various locations (42.5, 52.4 and 62.4 cm for front and back side, 0 to 60 cm with 10 cm interval for left and right side). The results of this study showed that the dose of primary X-ray was attenuated to 20.52 (27.20%), 28.58 (25.20%), 38.82 (26.32%) and 48.20 mR (26.27%) for each tube voltages at 120 cm. In addition, The dose were 7.06 (8.91%), 9.90 (8.73%), 13.64 (9.25%) and 16.60 mR (9.05%) at 180 cm. As for the scatter in front and back side, the attenuated dose were 0.15 mR (23.09%) and 0.15 mR (22.08%) at 120 cm, and 0.07 mR (10.43%) and 0.06 mR (8.83%) at 180 cm. Scatter was decreased in third quadrant. Therefore, it is recommended that radiological technologists should keep long distance from the object.

Design of a Radiation Spectroscopy Detector using a Spherical Scintillator and Development of a Radiation Source Position Tracking System (구형의 섬광체를 이용한 방사선 스펙트로스코피 검출기 설계 및 방사선원 위치 추적 시스템 개발)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.725-731
    • /
    • 2020
  • A radiation spectroscopy detector using a spherical scintillator was designed, and a system was developed to track the position of a radiation source using several detectors. The position tracking algorithm was designed based on the theory that the number of radiations decreases according to the inverse square law of distance, and the position of the radiation source was calculated by measuring the number of radiations generated from the radiation sources at various positions. The radiation generated from the radiation source is detected by different coefficients in each detector, and the difference between these detected coefficients varies in proportion to the inverse square of the distance. Geant4 Application for Tomographic Emission (GATE) simulation was performed to verify and evaluate the performance of the designed radiation source position tracking system, and radiation generated from radiation sources placed at different positions was counted with each detector. The number of measured radiations was tracked through the radiation source position tracking algorithm, and the error between the actual radiation source position and the position calculated by the algorithm was evaluated. The error between the position of the actual radiation source and the calculated position was measured as an average of 0.11% on the X-axis and 0.37% on the Y-axis, and it was verified that the position can be measured very accurately.

Analysis of free field for Acoustic Anechoic Chamber based on Time Stretched Pulse (Time Stretched Pulse를 이용한 무향실 자유음장 분석)

  • Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.111-119
    • /
    • 2012
  • Time Stretched Pulse (TSP) is used for transmitting and analyzing the impulse signal over the designated spatial place. However, if transfer functions of transmitter and receiver are unknown, performance investigation of free field in temporal domain is barely possible due to the overlap between the direct and indirect signal from the space. Generally, the free field or hemi-free field is evaluated by the Annex A of ISO 3745 in which utilizing the inverse square law with one-third octave band signals. In this paper, the author performs analysis of free field via applying TSP with inverse square law and the results are compared with the one-third octave band signals. According to the analysis of deviation between the corresponding signal and inverse square law model, the proposed TSP method provides the comparable performance index to the one-third octave band signal with reduced measuring time. Provided that the pre-whitening can be implementable by employing the speaker and microphone transfer function, further analyses from TSP compression are able to be performed such as multipath separation from time domain data. The anechoic chamber used in this experiment is verified conformance with ISO 3745 for free field and hemi-free field condition for limited frequency of the signal.

The study on the development of noise prediction program for construction sites (건설공사장 소음예측 프로그램 개발에 관한 연구)

  • Yoon, Je-Won;Kim, Young-Chan;Kang, Hee-Man;Kim, Chul-Hwan;Chang, Tae-Sun;Lee, Ki-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.974-977
    • /
    • 2007
  • 본 연구에서는 건설 공사소음 예측 및 가설방음벽 설계를 위해 개발한 공사장 소음예측 프로그램에 대해 소개하고자 한다. 또한, 건설장비가 운영되는 동안 이격거리별 소음측정을 수행한 후 측정결과와 해석결과와의 비교검토를 통해 개발 프로그램의 타당성을 검증하고자 하며, 상용되고 있는 소음해석 전용 소프트웨어를 이용해 다양한 경우에 대한 소음해석을 수행한 후 해석결과를 개발 프로그램의 해석결과와 비교함으로서 개발 프로그램의 타당성을 검증하는 것을 본 연구의 목적으로 한다.

  • PDF

Dose Distribution&Calibration in HDR Intracavitary Irradiation for Uterine Cervical Cancer (자궁경부암의 강내치료를 위한 선량측정)

  • 김진기;김정수;김형진;권형철
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • Dose distribution of HDR-RALS source represents an inverse square law as the distance. Difference of measurement value and calculation value according of brachytherapy. Therefore, in HDR-RALS dose calibration and calculation have an important effect in treatment of uterine cervical cancer and absorbed dose of interesting points. In intracavitary therapy, particula attention is paid for precise determination of the doses to be applied. In this report, we have discussed that the calibration of a HDR-RALS, differences between calculation dose use of isodose chart and measurement in rectum. Dose rate calibration of radiation sources are obtained from air kerma and Г factor with calibraed ion chamber for cobalt source. and used semiconductor detector for compared with measurement in phantom. Eighteen patients were treated with a HDR-RALS for intrcavitarty irradiation (ICR) using a cobalt-cesium source. Repoductivity of dose measurements were 0.3 -1.1% in phantom. The means of dose distribution was -6- +21% between calculation of isodose chart and measurement of recyum, and was same mean value upper 6.3% in measurement value than calculation does.

  • PDF

The Study on Applicability of Manufactured Lead(II) Iodide Dosimeter for Dose Measurement in Brachytherapy (방사선근접치료 분야의 선량 측정을 위해 제조된 Lead(II) Iodide 선량계의 적용가능성 연구)

  • Yang, Seung-Woo;Han, Moo-Jae;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.789-794
    • /
    • 2021
  • Brachytherapy is a treatment in which radioactive isotopes are placed inside the body to intensively irradiate the tumor with radiation. Because brachytherapy uses a radioisotope source with a high dose rate, it is very important to know the exact location and dose of the source. However, in clinical practice, it is evaluated inaccurately with the naked eye through rulers and autoradiographs. Therefore, in this study, a dosimeter that can be used for brachytherapy was developed using a lead(II) iodide (PbI2) material, and the applicability was evaluated by analyzing the reproducibility, linearity, and PID items. As a result of reproducibility evaluation, the RSD value was 1.41%, satisfying the evaluation criteria of 1.5%. As a result of the linearity evaluation, the R2 value was 0.9993, which satisfies the evaluation criterion of 0.9990. As a result of PID evaluation, it showed only a difference of 0.06 cm compared with the theoretical value of the inverse square law of distance at the 50% dose reduction point. The dosimeter manufactured in this experiment shows results that satisfy the standard in all evaluations, so it is judged that the possibility of applying the dosimeter in the radiation brachytherapy area is sufficient.

The role of Under-balcony Speaker in the Multimedia Environmental (멀티미디어 환경에서 언더발코니 스피커의 역할)

  • Song, Deog-Geun;Park, Eun-Jin;Lee, Seon-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.86-89
    • /
    • 2015
  • Formula acoustic characteristics of the room with a double layer, are compared through simulation and actual measurement. The rear area of the under- balcony speakers will cause a delay difference between the main speaker. In the mid / bass parts do not generate sufficient pressure is lowered and comb-Filtering phenomenon occurs significantly. The lower right area of the under- balcony speakers and speaker distance is the sound pressure of the under- balcony speakers to around 2 ~ 3m bigger than the main speakers and the sound image matches the pulpit is broken. Also, under area is more than 5 ~ 6m from the balcony outside speakers and causes differ by more than 10dB lower than the under- balcony speakers depending on the local laws of Translator wins Well, the main speaker at mid / high frequency sounds do not enter the sound pressure variations will drop by a significant. Appropriate arrangement and the output of the speaker according to the position under the balcony, and output of the main speakers are requested to minimize this problem sound. The proper sound design direction for the under- balcony speakers must be presented in order to improve the lower balcony area more pleasant acoustic environment.

Evaluation of Spatial Dose Rate in Working Environment during Non-Destructive Testing using Radioactive Isotopes (방사성동위원소를 이용한 비파괴 검사 시 작업환경 내 공간선량률 평가)

  • Cho, Yong-In;Kim, Jung-Hoon;Bae, Sang-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.373-379
    • /
    • 2022
  • The radiation source used for non-destructive testing have permeability and cause a scattered radiation through collisions of surrounding materials, which causes changes in the surrounding spatial dose. Therefore, this study attempted to evaluate and analyze the distribution of spatial dose by source in the working environment during the non-destructive test using monte carlo simulation. In this study, Using FLUKA, a simulation code, simulates 60Co, 192Ir, and 75Se source used in non-destructive testing, The reliability of the source term was secured by comparing the calculated dose rate with the data of the Health and Physics Association. After that, a non-destructive test in the radiation safety facility(RT-room) was designed to evaluate the spatial dose according to the distance from the source. As a result of the spatial dose evaluation, 75Se source showed the lowest dose distribution in the frontal position and 60Co source showed a dose rate of about 15 times higher than that of 75Se and about 2 times higher than that of 192Ir. In addition, the spatial dose according to the distance tends to decrease according to the distance inverse square law as the distance from the source increases. Exceptionally, 60Co, 192Ir, and 75Se sources confirmed a slight increase within 2 m of position. Based on the results of this study, it is believed that it will be used as supplementary data for safety management of workers in radiation safety facilities during non-destructive testing using radioactive isotopes.