• Title/Summary/Keyword: 거꿀시간 참반사 보정

Search Result 3, Processing Time 0.02 seconds

Reverse-time Migration using Surface-related Multiples (자유면 기인 겹반사파를 이용한 거꿀시간 참반사 보정)

  • Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.41-53
    • /
    • 2018
  • In the traditional seismic processing, multiple reflections are treated as noise and therefore they are eliminated during data processing. Recently, however, many studies have begun to consider multiples as signals rather than noise for seismic imaging. Multiple reflections can illuminate an area where primary reflections are not able to cover, thus it is allowed that a smaller number of shots and receivers are used for imaging large areas. In order to verify this, surface-related multiples were used for reverse-time migration (RTM), and then we compared the results with conventional RTM images which are generated from primary reflections. To utilize multiples, we separated multiples from whole seismic data using surface-related multiple elimination (SRME) method. Numerical examples confirmed that the migration using multiples can image wider area than the conventional migration, particularly in the shallow subsurface layers. In addition, the migration of multiples could eliminate the acquisition footprints.

Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance (음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선)

  • Lee, Gang Hoon;Pyun, Sukjoon;Park, Yunhui;Cheong, Snons
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2016
  • Migration image can be distorted due to reflected waves in the source and receiver wavefields when discontinuities of input velocity model exist in seismic imaging. To remove reflected waves coming from layer interfaces, it is a common practice to smooth the velocity model for migration. If the velocity model is smoothed, however, the subsurface image can be distorted because the velocity changes around interfaces. In this paper, we attempt to minimize the distortion by reducing reflection energy in the source and receiver wavefields through acoustic impedance homogenization. To make acoustic impedance constant, we define fake density model and use it for migration. When the acoustic impedance is constant over all layers, the reflection coefficient at normal incidence becomes zero and the minimized reflection energy results in the improvement of migration result. To verify our algorithm, we implement the reverse-time migration using cell-based finite-difference method. Through numerical examples, we can note that the migration image is improved at the layer interfaces with high velocity contrast, and it shows the marked improvement particularly in the shallow part.

Development of a Prestack Generalized-Screen Migration Module for Vertical Transversely Isotropic Media (횡적등방성 매질에 적용 가능한 겹쌓기 전 Generalized-Screen 참반사 보정 모듈 개발)

  • Shin, Sungil;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.71-78
    • /
    • 2013
  • The one-way wave equation migration is much more computationally efficient comparing with reverse time migration and it can provide better image than the migration algorithm based on the ray theory. We have developed the prestack depth migration module adopting (GS) propagator designed for vertical transverse isotropic media. Since GS propagator considers the higher-order term by expanding the Taylor series of the vertical slowness in the thin slab of the phase-screen propagator, the GS migration can offer more correct image for the complex subsurface with large lateral velocity variation or steep dip. To verify the validity of the developed GS migration module, we analyzed the accuracy with the order of the GS propagator for VTI media (GSVTI propagator) and confirmed that the accuracy of the wavefield propagation with the wide angles increases as the order of the GS propagator increases. Using the synthetic seismic data, we compared the migration results obtained from the isotropic GS migration module with the anisotropic GS migration module. The results show that the anisotropic GS migration provides better images and the improvement is more evident on steeply dipping structures and in a strongly anisotropic medium.