• Title/Summary/Keyword: 갱구

Search Result 96, Processing Time 0.026 seconds

A study on effects of landscape design of road tunnel portal to interior lighting of tunnels (도로터널의 갱구부 경관설계가 터널 내부조명에 미치는 영향에 관한 연구)

  • Lee, Mi-Ae;Lee, Dong-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.497-504
    • /
    • 2013
  • This research uses numerical analysis to examine the tunnel portal landscape affecting the brightness level of interior lighting when designing lights for road tunnels through the L20 method. In order to extract the brightness recognition per form of a tunnel entrance and to evaluate the effects of the characteristics of the materials of facilities near a tunnel portal, brightness analysis was conducted by filming brightness on a video photometer called Hi-land Elf System, and a surface brightness photometer called LMK Mobile Advanced. Tunnels in Korea are mostly distributed in mountain areas; thus, the ratio occupied by the sky, which has the highest brightness within the angle of L20, is close to zero, while most of the ratio was occupied by brightness by the area near the tunnel entrance or road surface. However, for a tunnel portal retaing wall, which allows the width of a tunnel entrance to seem wider within the L20 angle, appeared to be have higher brightness compared to nearby areas or the surface, which is an element increasing the tunnel portal brightness within the tunnel, and the road facilities near the tunnel portal appeared to have an effect on the brightness as well. Thus, when designing tunnel lights based on brightness, the form of the tunnel entrance and the area width, material, and color of areas near the tunnel portal appeared to affect outside brightness and become an element affecting the establishment of the brightness level of the interior lights of tunnels. Consequently, reviewing such matters is a prerequisite when designing tunnel portal landscape.

A Study on the Stability Analysis and Countermeasure of Tunnel Portal Failure Slope - in Suanbo Hot Springs 1 and 2 Tunnel Failure Site (터널 갱구부 붕괴 사면의 안정성 해석 및 보강공법에 관한 연구 - 수안보 온천 1, 2터널 붕괴 현장을 중심으로)

  • Baek, Yong;Koo, Ho-Bon;Yoo, Ki-Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.367-378
    • /
    • 2002
  • Recently, the number of tunnels on national roads has been increased due to the trend that construction of the large-scaled cut slopes is limited because of the environmental issues. Therefore, the slope failures of tunnel portal have often occurred. The tunnel portal in use has limitations on selection of the countermeasure and construction against slope failure. In the cases of Suanbo hot springs 1 and 2 tunnel portals, seedding was chosen and constructed as the countermeasureof slope failure when the tunnel was first built but collapsed in April, 2002. In this study, the failure sites were examined accurately through the site investigation and an efficient countermeasure according to stability analysis is presented. It is shown that it is very efficient to use resloping for Suanbo hot springs 1 tunnel and concrete buttress, rock anchor to reinforcement countermeasure, and attached rockfall prevention net by dividing the site into 3 sections for Suanbo hot springs 2 tunnel.

An environmentally friendly tunnel construction method at low overburden (환경친화적인 저토피 터널굴착 공법)

  • Han, Kwang-Mo;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.207-216
    • /
    • 2002
  • Conventional Korean tunnel portals require a lot of overburden. For stability reasons, about 1.5 to 2.0 times the tunnel diameter is needed for the height in order to achieve a sufficient arching effect. Thus, considerable movement of earth and support constructions are required which lead to undesirably large changes of and damage to the environment. With a massively designed pipe roof, tunnels at low overburden can be built. To effectively construct pipe roof as an advanced safeguarding method, the following properties are indispensable: stability, insensitivity to settling and drilling accuracy. A new pipe roof method, AT-casing system, has been developed which on the one hand entirely combines the properties mentioned above, and which on the other hand permits the construction of safe, economical and environmentally friendly tunnels at low overburden heights of 3 to 5m.

  • PDF