• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.025 seconds

Image Retrieval based on Central Objects in Color Images (중심 객체 기반의 영상 검색 기술)

  • 권선미;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.145-148
    • /
    • 2002
  • 우리가 원하는 고수준의 검색 개념을 영상에서의 저수준 특징들을 조합하여 표현하는 데는 한계가 있다. 한편, 우리의 검색 개념은 주로 영상에 포함된 객체 단위로 형성되는 것이 일반적이다. 본 논문에서는 영상의 중심 부근에 비교적 큰 크기로 정의되는 중심 객체 및 중심 객체주변의 배경 영역을 추출하여 검색에 활용함으로써, 인간의 검색 의지를 최대한 정확하게 반영할 수 있는 하나의 방법을 제안한다. 중심 객체와 배경 영역은 영상분할 및 영역병합 결과에서 영상의 중앙 및 모서리에 존재하는 영역을 선정하여 칼라 유사도를 기준으로 영역확장을 통해 구한다. 검색은 단계적으로 할 수 있도록 하였는데, 먼저 사용자의 키워드에 의한 검색이 가능하도록 하였으며, 검색 결과는 그룹핑에 의한 대표영상을 보여 준 후 사용자가 원하는 영상을 선택적으로 얻을 수 있도록 하였다. 아울러, 하나 이상의 영상에서 추출된 객체와 배경을 조합하여 재검색할 수 있도록 함으로써 검색 성능을 높이고자 하였다. 한편, 자동 추출된 객체를 이용하여 사용자가 객체 영역을 지정하기 위해 개입하는 번거로움을 줄이면서도 사용자가 영역을 직접 선택한 경우와 비슷한 결과를 얻을 수 있도록 하였다.

  • PDF

Object Extraction Method Using Contour Information-based Saliency Map and Object andidate Image (윤곽선 정보 기반의 Saliency Map과 객체 후보 영상을 이용한 객체 추출 기법)

  • Han, Sung-Ho;Hong, Yeong-Pyo;Lee, Gang-Seong;Lee, Sang-Hun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.527-530
    • /
    • 2012
  • 본 논문은 윤곽선이 두드러지는 Saliency Map모델을 생성하고 객체 후보 영상을 획득하여 객체를 추출할 수 있는 기법에 관한 연구이다. 제안하는 기법은 객체의 윤곽선 정보가 두드러지는 Saliency Map을 생성하기 위해 에지(Edge), 초점(Focus), 엔트로피(Entropy)를 특징 정보로써 사용하고, 획득한 Saliency Map의 임계화 과정 및 라벨링 과정을 통해 배경 영역을 제거한 객체 후보 영상을 획득한다. 이후 Mean Shift Segmentation 알고리즘을 적용한 영상의 세그먼트별 객체 후보 영상의 픽셀 평균값을 적용한 영상을 다시 라벨링 과정을 이용하여 객체를 추출한다.

  • PDF

Design of a Cooperative Medical Information System which Supports Similarity-Based Object Retrieval (유사객체 검색을 지원하는 협력 의료정보 시스템 설계)

  • 원정임;박형주;안상원;윤지희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.119-121
    • /
    • 2000
  • 문자 정보 및 X-Ray, MRI, CT등과 같은 의료영상 정보를 취급하는 의료정보 시스템에서의 유사객체 검색을 지원하는 협력 의료정보 시스템의 설계에 대하여 논한다. 이를 위해 객체간 의미적 관련성을 기반으로 한 유사도 자동 추출 방식 및 지식베이스 구성 방식을 제안하고 이를 활용한 유사객체 검색에 대하여 논한다. 특히 의료영상을 객체 값으로 갖는 경우 객체간 유사도는 영상처리의 특징추출 방식에 의해 추출된 영상내에 출현하는 공간 객체의 위치, 면적, 둘레, 공간 객체간의 위상 관계 등의 공간 속성을 이용한다. 여기서 공간적 위치에 근거한 유사도는 공간 위치를 대표하는 Hilbert값의 분포와 빈도를 토대로 계산한다.

  • PDF

3D Object's shape and motion recovery using stereo image and Paraperspective Camera Model (스테레오 영상과 준원근 카메라 모델을 이용한 객체의 3차원 형태 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.135-142
    • /
    • 2003
  • Robust extraction of 3D object's features, shape and global motion information from 2D image sequence is described. The object's 21 feature points on the pyramid type synthetic object are extracted automatically using color transform technique. The extracted features are used to recover the 3D shape and global motion of the object using stereo paraperspective camera model and sequential SVD(Singuiar Value Decomposition) factorization method. An inherent error of depth recovery due to the paraperspective camera model was removed by using the stereo image analysis. A 30 synthetic object with 21 features reflecting various position was designed and tested to show the performance of proposed algorithm by comparing the recovered shape and motion data with the measured values.

Ileus Detection by Using Edge Information and Hough Transform (에지 정보와 Hough Transform을 이용한 장폐색 영역 검출)

  • Lee, Hae Ill;Kim, Baek Cheon;Kim, Hyun Woo;Park, Seung Ik;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.488-490
    • /
    • 2017
  • 본 논문에서는 장폐색 영역을 추출하는 방법을 제안한다. 제안된 방법은 Canny Edge Detector을 이용하여 X-ray 영상에서 객체들의 에지를 추출한다. 검출된 객체 에지들에서 장폐색의 영역이 형태학적으로 수평적으로 평평하다는 특징을 이용하기 위해서 Hough transform을 적용하여 수평적으로 평평한 영역을 가진 객체들을 추출하고, 추출된 객체들을 장폐색 영역으로 검출한다. 제안된 추출 방법을 25개의 장폐색 X-ray 영상을 대상으로 실험한 결과, 제안된 방법에서는 19개 대장 장폐색 영상에서는 모두 추출되었으나 6개의 소장 장폐색 영상에서는 추출에 실패하였다.

  • PDF

A Study on Detecting Salient Region using Frequency-Luminance of image (영상의 주파수-명도 특성을 이용한 관심 영역 탐지에 관한 연구)

  • Yoo, Tae-Hun;Lee, Jong-Yong;Kim, Jin-Soo;Lee, Sang-Hun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.486-489
    • /
    • 2012
  • 본 논문에서는 인간의 주의시각(Human Visual Attention)에 기반하여 영상에서 가장 유용하다고 생각되는 관심 영역(Salient Region)을 새로운 방식으로 탐지해내고 관심-객체를 검출하는 방법을 제안한다. 제안하는 시스템은 인간의 주의시각 특성인 주파수와 명도, 색상 특징을 이용하는데, 먼저 주파수-명도 정보를 이용한 특징 지도(Feature map)와 색상 정보를 이용한 특징 지도를 각각 생성 한 후 영상의 특징 점(Saliency Point)을 추출한다. 이렇게 생성된 특징 지도와 특징 점을 이용하여 집중 윈도우의 위치와 크기를 결정하고 집중 윈도우 내에 특징 지도를 결합하여 관심 영역을 탐지하고 해당하는 영역에 대해 관심-객체를 추출한다.

  • PDF

Abnormal Crowd Behavior Detection using a Modified Feature Map (특징점 맵 보정을 통한 군중 이상행동패턴 인식 방법)

  • Jung, Sung-Uk;Jee, Hyung-Keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.252-253
    • /
    • 2015
  • 군중의 이상행동을 검출하는 것은 군중 모니터링, 보안 및 CRM 시스템의 관점에서 중요한 요소 중의 하나이다. 기존의 방법은 대다수가 옵티컬플로우를 기반으로한 검출방법으로 객체가 움직이지 않는 경우에는 객체로 인식할 수 없는 문제점이 생긴다. 또한, 많은 데이터량을 처리하기 때문에 실시간성이 보장되지 않는다는 단점이 있다. 이를 극복하기 위해서, 본 논문에서는 특징점 맵 보정과 분포분석을 통한 군중의 밀집과 대피하는 현상을 검출하는 방법을 제안한다. 먼저, 군중에서 옵티컬플로우 기반으로 움직이는 FAST 특징점을 추출하고 추출된 특징점의 분포에따라 특징점맵을 복원한다. 복원된 특징점 맵과 특징점의 분포에 기반하여 군중의 이상정도를 결정하게 된다. PETS2009 데이터베이스를 사용하여 결과를 측정하였다.

  • PDF

Object Matching Using Invariant moments (불변의 모멘트를 이용한 객체 매칭)

  • 이윤성;원치선
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1980-1983
    • /
    • 2003
  • 자동으로 분할된 영상에서 각각의 영역들은 동질의 특징을 가지는 성분들로 구성되어 있다. 그러나 대부분의 경우 하나의 영역만으로는 특정한 혹은 의미 있는 오브젝트를 정확히 표현 할 수 없다. 이 중에서 하나 이상의 영역 즉 비슷한 특징을 갖는 몇몇 영역들의 집합이 사용자에게 있어서 의미 있는 오브젝트를 구성한다고 볼 수 있다 이를 전제로 본 논문에서는 분할된 영상 내에 존재하는 기저 영역들의 모멘트 추출을 기반으로 하는 객체 매칭 기법을 제안한다. 제안된 매칭 방법에서는 자동 영상 분할된 각 영역들로부터 모멘트를 추출하고 이 정보를 이용하여 조합된 영역에 대한 모멘트를 계산하게 되고, 다시 이들 조합된 영역의 모멘트를 이용하여 그 영역의 쉐입(shape) 특징 벡터를 추출한다. 이를 통하여 사용자가 찾고자 하는 영역과 분할영상내의 모든 영역의 조합에 대해서 초기에 추출된 정보만을 이용하여 매칭할 수 있도록 하였다.

  • PDF

Contend Base Image Retrieval using Color Feature of Central Region and Optimized Comparing Bin (중앙 영역의 컬러 특징과 최적화된 빈 수를 이용한 내용기 반 영상검색)

  • Ryu, Eun-Ju;Song, Young-Jun;Park, Won-Bae;Ahn, Jae-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.5
    • /
    • pp.581-586
    • /
    • 2004
  • In this paper, we proposed a content-based image retrieval using a color feature for central region and its optimized comparing bin method. Human's visual characteristic is influenced by existent of central object. So we supposed that object is centrally located in image and then we extract color feature at central region. When the background of image is simple, the retrieval result can be bad affected by major color of background. Our method overcome this drawback as a result of the human visual characteristic. After we transform Image into HSV color space, we extract color feature from the quantized image with 16 level. The experimental results showed that the method using the eight high rank bin is better than using the 16 bin The case which extracts the feature with image's central region was superior compare with the case which extracts the feature with the whole image about 5%.

Semantic Cue based Image Classification using Object Salient Point Modeling (객체 특징점 모델링을 이용한 시멘틱 단서 기반 영상 분류)

  • Park, Sang-Hyuk;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • Most images are composed as union of the various objects which can describe meaning respectively. Unlike human perception, The general computer systems used for image processing analyze images based on low level features like color, texture and shape. The semantic gap between low level image features and the richness of user semantic knowledges can bring about unsatisfactory classification results from user expectation. In order to deal with this problem, we propose a semantic cue based image classification method using salient points from object of interest. Salient points are used to extract low level features from images and to link high level semantic concepts, and they represent distinct semantic information. The proposed algorithm can reduce semantic gap using salient points modeling which are used for image classification like human perception. and also it can improve classification accuracy of natural images according to their semantic concept relative to certain object information by using salient points. The experimental result shows both a high efficiency of the proposed methods and a good performance.