• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.034 seconds

Graphic Hardware Based Visualization of Three Dimensional Object Boundaries in Volume Data Set Using Three Dimensional Textures (그래픽 하드웨어기반의 3차원 질감을 사용한 볼륨 데이터의 3차원 객체 경계 가시화)

  • Kim, Hong-Jae;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.623-632
    • /
    • 2008
  • In this paper, we used the color transfer function and the opacity transfer function for the internal 3D object visualization of an image volume data. In transfer function, creating values of between boundaries generally is ambiguous. We concentrated to extract boundary features for segmenting the visual volume rendering objects. Consequently we extracted an image gradient feature in spatial domain and created a multi-dimensional transfer function according to the GPU efficient improvement. Finally using these functions we obtained a good research result as an implementing object boundary visualization of the graphic hardware based 3D texture mapping.

  • PDF

Object-based Image Retrieval Using Dominant Color Pair and Color Correlogram (Dominant 컬러쌍 정보와 Color Correlogram을 이용한 객체기반 영상검색)

  • 박기태;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • This paper proposes an object-based image retrieval technique based on the dominant color pair information. Most of existing methods for content based retrieval extract the features from an image as a whole, instead of an object of interest. As a result, the retrieval performance tends to degrade due to the background colors. This paper proposes an object based retrieval scheme, in which an object of interest is used as a query and the similarity is measured on candidate regions of DB images where the object may exist. From the segmented image, the dominant color pair information between adjacent regions is used for selecting candidate regions. The similarity between the query image and DB image is measured by using the color correlogram technique. The dominant color pair information is robust against translation, rotation, and scaling. Experimental results show that the performance of the proposed method has been improved by reducing the errors caused by background colors.

Content-Based Image Retrieval System Using the Shape and Color of Object on the WWW (웹 상에서 객체의 모양과 색상을 기반으로 하는 내용-기반 이미지 검색 시스템)

  • 전상현;서민형;박장춘
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.365-367
    • /
    • 1999
  • 최근 인터넷 검색엔진에서 이미지 검색이 중요한 요소로 대두되고 있으며, 특히 영상 자체의 내용을 근간으로 하는 내용-기반 이미지 검색 시스템이 인기를 모으고 있다. 본 논문에서는 이러한 내용-기반 이미지 검색 시스템에서 중요한 문제인 객체 특징 추출방법에 대해서 논의하며, 특정 이미지 객체에 적용될 수 있는 4가지 종류(모양, 칼라, 크기, 면적)의 특징 값을 제안한다. 또한, 제시한 특징 값을 사용하여 웹 상에서 구현한 검색 시스템의 설계를 함께 선 보인다.

  • PDF

Inlier selection and Database Redundancy Reducing Method in Urban Environment (도시 영상에서의 Inlier 선택과 Database Redundancy 감소 기법)

  • Ahn, Ha-eun;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.29-32
    • /
    • 2016
  • 특징점 기반 건물인식 시스템에서는 강건한 특징점을 추출하는 것이 인식률 향상에 바로 직결되는 중요한 요소이다. 영상에서 특징점들이 너무 많이 추출되는 경우 인식이나 학습단계에서의 알고리즘 수행 시간을 증가시키는 원인이 된다. 또환 중요하지 않은 특징점(배경이나 가려짐 영역, 기타 객체에서 추출된 특징점)이나 조명 변화에 민감한 영역에서 임의로(arbitrarily) 추출된 특징점은 인식률을 저하시키는 문제를 발생시킨다. 특히 도시환경에서 촬영된 영상의 특징점을 추출할 때 이러한 문제 현상들이 빈번하게 발생한다. 본 논문에서는 이러한 문제를 해결하고자 multi-view 영상에서 건물의 homography를 기반으로 정확히 정합된 특징점인 inlier만을 선택하는 알고리즘을 제안한다. Inlier로 분류된 특징점들은 건물 인식 시스템을 구성하기 위해 사용되고 조명 변화에 민감한 영역에서 임의로 추출된 특징점들은 영역 기반 특징을 추출하여 건물 인식 시스템의 인식률을 높인다. 또한 이를 이용하여 인식하고자 하는 건물과의 상관관계가 적은 잉여 영상들을 DB에서 제거하는 방법도 제안한다. 실험을 통하여 제안하는 기법의 우수성을 보였다.

  • PDF

Conten-Based Image Retrieval Using Wavelet and Texture (Wavelet 변환과 질감 특성을 이용한 내용기반 영상 검색)

  • Lee, Hyun-Woon;Chun, Jun-Chul
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.1051-1055
    • /
    • 2000
  • 본 연구에서는 내용기반 영상 데이터 검색을 위하여 변환 영역에서 위치 정보와 주파수 정보를 가지는 웨이블릿 성질을 이용하여 객체들의 특징을 추출하는 방안인 Vector Quantization 을 이용한 영상을 검색하는 방안을 제시한다. 내용기반 영상 검색의 주요 특징들은 색상, 질감, 그리고 영상의 공간적인 특징을 고려한 특징 값 등이 사용된다. 이러한 영상의 특징들을 어떻게 결합하고 특징 추출을 하느냐에 따라 검색의 효율성에 영향을 준다. 따라서 본 연구에서는 영상의 위치 정보와 주파수 정보를 가지는 웨이블릿 변환 후 얻어지는 저대역 부밴드에서의 공간적인 특성을 고려한 특징 값을 이용하여 Vector Quantization 알고리즘에 의해 정지영상의 객체 대표 특징들을 빠르게 검색하고자 한다. 본 연구에서는 Haar Wavelet 과 Vector Quantization 에서 색상과 질감의 가중치를 적용하고자 한다.

  • PDF

Shadow casting method using direction and edge feature of the object region (방향성과 경계선을 이용한 그림자 제거 방법)

  • Lee J.C;Lee J.W;Cho J.H;Kim S.H
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.916-918
    • /
    • 2005
  • 본 논문에서는 감시 시스템 내에서 검출된 객체에 대해 정확한 특징벡터를 추출하기 위한 그림자 제거(shadow casting)방법을 제안한다. 그림자에 의해 부정확한 특징벡터를 가지게 되는 객체는 동일한 객체임에도 불구하고 서로 다른 객체로 인식하는 잘못된 결과를 가져온다. 이러한 문제점을 해결하기 위해 추출된 객체의 경계선(edge)의 수직 히스토그램과 그림자의 방향성을 사용하여 그림자를 제거한다.

  • PDF

Behavior Recognition of Moving Object based on Multi-Fusion Network (다중 융합 네트워크 기반 이동 객체 행동 인식)

  • Kim, Jinah;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.641-642
    • /
    • 2022
  • 단일 데이터로부터의 이동 객체에 대한 행동 인식 연구는 데이터 수집 과정에서 발생하는 노이즈의 영향을 크게 받는다. 본 논문은 영상 데이터와 센서 데이터를 이용하여 다중 융합 네트워크 기반 이동 객체 행동 인식 방법을 제안한다. 영상으로부터 객체가 감지된 영역의 추출과 센서 데이터의 이상치 제거 및 결측치 보간을 통해 전처리된 데이터들을 융합하여 시퀀스를 생성한다. 생성된 시퀀스는 CNN(Convolutional Neural Networks)과 LSTM(Long Short Term Memory)기반 다중 융합 네트워크 모델을 통해 시계열에 따른 행동 특징들을 추출하고, 깊은 FC(Fully Connected) 계층을 통해 특징들을 융합하여 행동을 예측한다. 본 연구에서 제시된 방법은 사람을 포함한 동물, 로봇 등의 다양한 객체에 적용될 수 있다.

A Study on The Face Extraction Using Histogram and Region Segmentation (히스토그램과 영역분할 기법을 이용한 얼굴추출에 관한 연구)

  • Hwang, Hun;Choi, Chul;Choi, Young-Kwan;Cho, Sung-Min;Park, Chang-Choon
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.633-636
    • /
    • 2002
  • 기존에 얼굴인식이나 얼굴영역을 추출하는 방법들은 대부분 얼굴의 외곽선은 고려하지 않은 상태에서 얼굴의 특징인 눈, 코, 입 부분만을 추출하는 경우가 많아 정확한 얼굴을 추출하기가 어려웠다. 본 논문에서는 얼굴의 색상과 영역분할 기법(Region Segmentation technique)을 함께 사용해서 얼굴부분과 얼굴의 특징을 추출하여 보다 정확한 얼굴 부분을 분할하고자 한다. 얼굴추출방법을 대표색상 추출과정과 실제 영역을 분할하여 얼굴부분을 추출하는 과정으로 나누어 히스토그램을 이용하여 대표색상을 추출한 후, 영역분할 기법을 이용하여 대표색상을 포함하고 있는 영역에 대해 얼굴이라는 가정을 배제하고, 이미지들을 객체(Object)화 하여 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다.

  • PDF

Recursive extraction method for representing shape feature of object (객체 모양의 특징을 표현하는 재귀적 윤곽 우세 점 추출 방안)

  • 김영태;엄기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.19-21
    • /
    • 2001
  • 본 논문은 객체의 유사성 비교를 위해 객체의 모양을 표현하는 한 가지 특징인 윤곽선상의 우세 점들을 찾는 재귀적 윤곽선 근사 알고리즘을 제안한다. 이 알고리즘은 같은 모양의 개체에 대하여 그 객체의 무게 중심을 이용하여 항상 일정한 특정 시작점을 찾음으로써 동일한 우세 점들을 재귀적으로 빠른 수행 시간에 찾는다. 또한 이 알고리즘은 열린 곡선, 닫힌 곡선 및 다각형 등 어떤 모양의 평면 도형에도 모두 적용 가능하다. 제안 알고리즘의 평균 시간 복잡도는 O(nlogn)이다.

  • PDF

Recognition of Partially Occluded Binary Objects using Elastic Deformation Energy Measure (탄성변형에너지 측도를 이용한 부분적으로 가려진 이진 객체의 인식)

  • Moon, Young-In;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.63-70
    • /
    • 2014
  • Process of recognizing objects in binary images consists of image segmentation and pattern matching. If binary objects in the image are assumed to be separated, global features such as area, length of perimeter, or the ratio of the two can be used to recognize the objects in the image. However, if such an assumption is not valid, the global features can not be used but local features such as points or line segments should be used to recognize the objects. In this paper points with large curvature along the perimeter are chosen to be the feature points, and pairs of points selected from them are used as local features. Similarity of two local features are defined using elastic deformation energy for making the lengths and angles between gradient vectors at the end points same. Neighbour support value is defined and used for robust recognition of partially occluded binary objects. An experiment on Kimia-25 data showed that the proposed algorithm runs 4.5 times faster than the maximum clique algorithm with same recognition rate.