A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.808-810
/
2004
본 논문에서는 Contrast map과 Salient point를 이용하여 영상에서 중요한 객체를 자동으로 추출하는 방법을 제안한다. 우선 인간의 시각 체계와 유사한 밝기(luminance), 색상(color) 그리고 방향성(orientation) 3가지의 특징정보를 이용하여 각각의 특징정보로부터 feature map을 생성하고 이 3가지의 feature map을 선형 결합하여 contrast map을 생성한다. 이렇게 생성된 하나의 contrast map을 이용하여 대략적인 Attention Window (AW)의 위치를 결정한다. 다음으로, 영상으로부터 웨이블릿 변환을 적용하여 salient point를 찾고, salient point의 분포와 contrast map의 중요도에 따라 AW의 크기를 실제 중요 객체의 크기와 가장 유사하도록 축소시킨다. 이렇게 선택되고 축소된 AW안에서 실제 중요 객체를 추출하기 위해 AW 내부에 존재하는 영상에 대해서만 영상 분할을 하고 불필요한 영역을 제거하여 자동으로 중요객체를 추출하도록 한다.
본 논문에서는 임베디드 환경을 위한 객체인식 시스템의 구조 및 실시간 처리를 위한 객체인식기의 하드웨어설계를 제안한다. 제안된 구조는 SIFT(Scale Invariant Feature Transform)를 이용하여 사물의 특징점을 추출하고, 비교하여 객체를 인식한다. SIFT는 영상의 크기 및 회전 등의 변화에 적응이 뛰어난 알고리즘이지만, 복잡한 연산이 반복되어 연산시간이 많은 특성상 임베디드 환경에서 실시간 처리가 어렵다. 따라서 해당 알고리즘을 하프웨어로 설계하여, 임베디드 사물인식 시스템에 적용한다. 사물인식의 빠른 처리와 인식영역의 구분을 위해 JSEG 영상분할 알고리즘을 활용하며, SIFT 특징점 추출 연산과 병렬 실행이 가능하도록 SIFT와 함께 하드웨어 구조로 설계한다.
본 논문은 박물관이나 고가의 물품을 판매하는 곳에서 특정한 객체를 감시하고, 특정 객체의 도난을 방지하기 위하여 다중카메라를 설치하여 카메라 상호간의 정보를 교환함으로써 움직이는 객체를 추출하고 추적하는 시스템의 구현이다. 감시대상이 되는 객체의 상단과 정면에 카메라를 설치하여 움직임 객체가 감시대상 객체에 접촉하게 되면 두 대의 카메라가 동시에 움직임 객체를 추출하고 추적하게 된다. 먼저 정면의 카메라는 움직임 물체의 얼굴부분을 캡춰하고 지속적으로 얼굴영역을 확대 / 캡춰하면서 추적을 시작한다. 상단의 카메라는 많은 객체들의 움직임 속에서 특정한 객체만을 추적할 수 있으며, 추적은 방향예측을 통하여 수행하고 객체의 특징정보를 저장한다. 저장된 특징정보는 카메라의 범위를 벗어났을 때 인접한 카메라에 정보를 전송하고 지속적인 추적이 이뤄질 수 있도록 한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.1
/
pp.142-148
/
2014
A descriptor which is suitable for motion analysis by using the motion features of moving objects from the real time image sequence is proposed. To segment moving objects from the background, the background learning is performed. We extract motion trajectories of individual objects by using the sequence of the 1st order moment of moving objects. The center points of each object are managed by linked list. The descriptor includes the 1st order coordinates of moving object belong to neighbor of the pre-defined position in grid pattern, The start frame number which a moving object appeared in the scene and the end frame number which it disappeared. A video retrieval by the proposed descriptor combining global and local feature is more effective than conventional methods which adopt a single feature among global and local features.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.838-840
/
2005
본 논문에서는 감시 시스템 내에서 검출된 객체에 대해 정확한 특징벡터를 추출하기 위한 그림자 제거(shadow casting)방법을 제안한다. 그림자에 외해 부정확한 특징벡터를 가지게 되는 객체는 동일한 객체임에도 불구하고 서로 다른 객체로 인식하는 잘못된 결과를 가져온다. 이러한 문제점을 해결하기 위해 객체가 가지는 대칭성을 사용하여 그림자 후보 영역을 추출한 후 중심축으로부터의 거리에 비례한 가중치값을 사용하여, 추출한 영역에 대해 그림자를 제거를 수행한다.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.318-321
/
2003
의미 있는 객체가 영상에 포함되어 있는지를 판단하여 영상을 객체 및 비객체 영상으로 분류함으로써 영상 검색이나 효과적인 영상 데이터베이스 구축 등에 유용하게 활용 가능하다. 이에 본 논문에서는 영상 유형에 따른 특징을 분석하여 영상 분류를 위한 기준을 선정함으로써 입력 영상을 객체 및 비객체 영상으로 분류할 수 있는 방법을 제안한다 일반적으로 객체는 주로 영상의 중심 부근에 위치하고 주변과는 상이한 칼라 특징으로 표현되므로, 영상 중심 부근에 주로 위치하는 칼라의 분포 정보를 영상 분류의 기준으로 사용하였다. 또한 객체 추출 방법[4]을 적용하여 추출된 객체와 배경 사이의 공유 경계에서 발생하는 경계 강도 정도를 활용하였다. 코렐 CD에서 무작위로 선택된 800장의 영상에 대해 제안된 기준을 적용하여 분류한 결과 약80%의 분류 정확도를 얻었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.10a
/
pp.898-902
/
2012
A descriptor which is suitable for motion analysis by using the motion features of moving objects from the real time image sequence is proposed. To segment moving objects from the background, the background learning is performed. We extract motion trajectories of individual objects by using the sequence of the $1^{st}$ order moment of moving objects. The center points of each object are managed by linked list. The descriptor includes the $1^{st}$ order coordinates of moving object belong to neighbor of the per-defined position in grid pattern, the start frame number which a moving object appeared in the scene and the end frame number which it disappeared. A video retrieval by the proposed descriptor combining global and local feature is more effective than conventional methods which adopt a single feature among global and local features.
Journal of the Korea Society of Computer and Information
/
v.13
no.2
/
pp.87-94
/
2008
In this paper, an extraction method of objects of interest in the color images is proposed. It is possible to extract objects of interest from a complex background without any prior-knowledge based on the proposed method. For object extraction, Gator images that contain information of object location, are created by using Gator filter. Based on the images the initial location of attention windows is determined, from which image features are selected to extract objects. To extract object, I modify the previous method partially and apply the modified method. To evaluate the performance of propsed method, precision, recall and F-measure are calculated between the extraction results from propsed method and manually extracted results. I verify the performance of the proposed methods based on these accuracies. Also through comparison of the results with the existing method, I verily the superiority of the proposed method over the existing method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.10B
/
pp.1902-1911
/
1999
In this paper we present a content-based image retrieval algorithm using the visual feature vectors which describe the spatial characteristics of objects. The proposed technique uses the Gaussian mixture model(GMM) to represent multi-colored objects and the expectation maximization(EM) algorithm is employed to estimate the maximum likelihood(ML) parameters of the model. After image segmentation is performed based on GMM, the shape and color features are extracted from each object using Fourier descriptors and color histograms, respectively. Image retrieval consists of two steps: first, the shape-based query is carried out to find the candidate images whose objects have the similar shapes with the query image and second, the color-based query is followed. The experimental results show that the proposed algorithm is effective in image retrieving by using the spatial and visual features of segmented objects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.