• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.026 seconds

Representative Feature Extraction of Objects using VQ and Its Application to Content-based Image Retrieval (VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용 기반 영상 검색)

  • Jang, Dong-Sik;Jung, Seh-Hwan;Yoo, Hun-Woo;Sohn, Yong--Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.724-732
    • /
    • 2001
  • In this paper, a new method of feature extraction of major objects to represent an image using Vector Quantization(VQ) is proposed. The principal features of the image, which are used in a content-based image retrieval system, are color, texture, shape and spatial positions of objects. The representative color and texture features are extracted from the given image using VQ(Vector Quantization) clustering algorithm with a general feature extraction method of color and texture. Since these are used for content-based image retrieval and searched by objects, it is possible to search and retrieve some desirable images regardless of the position, rotation and size of objects. The experimental results show that the representative feature extraction time is much reduced by using VQ, and the highest retrieval rate is given as the weighted values of color and texture are set to 0.5 and 0.5, respectively, and the proposed method provides up to 90% precision and recall rate for 'person'query images.

  • PDF

Real-Time Monocular Camera Pose Estimation which is Robust to Dynamic Environment (동적 환경에 강인한 단안 카메라의 실시간 자세 추정 기법)

  • Bak, Junhyeong;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.322-323
    • /
    • 2021
  • 증강현실이나 자율 주행, 드론 등의 기술에서 현재 위치와 시점을 파악하기 위해서는 실시간 카메라 자세 추정이 필요하다. 이를 위해 가장 일반적인 방식인 연속적인 단안 영상으로부터 카메라 자세를 추정하는 방식은 두 영상의 정적 객체 간에 견고한 특징점 매칭이 이루어져야한다. 하지만 일반적인 영상들은 다양한 이동 객체가 존재하는 동적 환경이므로 정적 객체만의 매칭을 보장하기 어렵다는 문제가 있다. 본 논문은 이 같은 동적 환경 문제를 해결하기 위해, 신경망 기반의 객체 분할 기법으로 영상 속 객체를 추출하고, 객체별 특징점 매칭 및 자세 추정 결과로 정적 객체를 특정해 매칭하는 방법을 제안한다. 또한, 제안하는 정적 객체 특정 방식에 적합한 신경망 기반 특징점 추출 방법을 사용하면 동적 환경에 보다 강인한 카메라 자세 추정이 가능함을 실험을 통해 확인한다.

  • PDF

MPEG-4 Object Browsing and Extraction by Learning (MPEG-4 객체의 브라우징 및 학습에 의한 추출 기법)

  • 양만석;오상욱;설상훈
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.115-120
    • /
    • 1999
  • 본 논문은 MPEG-4 비디오 객체의 브라우징(browsing) 및 학습을 통한 객체 추출 기법을 제안한다. 제안된 학습에 의한 객체 추출 기법은, 객체 브라우징 시 임의 접근한 프레임에서 사용자가 내용 기반의 객체를 검색하기 위해 선택한 영역에 대한 인지적인 정보를 특징벡터(feature vector)로 history에 저장, 활용함으로써 프레임 내 객체의 계층적인 군집화(clustering)를 수행한다. 이러한 기법으로 인지적 개념과 근접하게 객체를 인식할 수 있음을 실험을 통해 확인하였다.

  • PDF

Salient Object Extraction from Video Sequences using Contrast Map and Motion Information (대비 지도와 움직임 정보를 이용한 동영상으로부터 중요 객체 추출)

  • Kwak, Soo-Yeong;Ko, Byoung-Chul;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1121-1135
    • /
    • 2005
  • This paper proposes a moving object extraction method using the contrast map and salient points. In order to make the contrast map, we generate three-feature maps such as luminance map, color map and directional map and extract salient points from an image. By using these features, we can decide the Attention Window(AW) location easily The purpose of the AW is to remove the useless regions in the image such as background as well as to reduce the amount of image processing. To create the exact location and flexible size of the AW, we use motion feature instead of pre-assumptions or heuristic parameters. After determining of the AW, we find the difference of edge to inner area from the AW. Then, we can extract horizontal candidate region and vortical candidate region. After finding both horizontal and vertical candidates, intersection regions through logical AND operation are further processed by morphological operations. The proposed algorithm has been applied to many video sequences which have static background like surveillance type of video sequences. The moving object was quite well segmented with accurate boundaries.

Human Body Tracking And Transmission System Suitable for Mobile Devices (모바일 기기에 적합한 인체 추적 및 전송 시스템)

  • Kwak, Nae-Joung;Song, Teuk-Sob
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.437-439
    • /
    • 2011
  • 본 논문에서는 카메라에서 입력되는 영상에서 객체의 특징 자동 추출하고 모바일 기기로 전송하여 인체의 움직임을 표현하는 시스템을 제안한다. 제안시스템은 연속된 입력영상에서 인체의 실루엣과 조인트를 자동추출하고 조인트를 추적함으로 객체를 추적한다. 추출된 특징은 객체의 각 연결점의 위치정보로 사용되며 특징을 중심으로 블록매칭 알고리즘을 적용하여 특징의 위치정보를 추적하고 모바일기기로 정보를 전송한다. 모바일 기기에서는 전송된 조인트 정보를 이용하여 인체의 움직임을 재현한다. 제안방법을 실험 동영상에 적용한 결과 인체의 실루엣과 조인트를 자동 검출하며 추출된 조인트로 인체의 매핑이 효율적으로 이루어졌다. 또한 조인트의 추적이 매핑된 인체에 반영되어 인체의 움직임도 적절히 표현되었다.

Object Feature Extraction and Matching for Effective Multiple Vehicles Tracking (효과적인 다중 차량 추적을 위한 객체 특징 추출 및 매칭)

  • Cho, Du-Hyung;Lee, Seok-Lyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.789-794
    • /
    • 2013
  • A vehicle tracking system makes it possible to induce the vehicle movement path for avoiding traffic congestion and to prevent traffic accidents in advance by recognizing traffic flow, monitoring vehicles, and detecting road accidents. To track the vehicles effectively, those which appear in a sequence of video frames need to identified by extracting the features of each object in the frames. Next, the identical vehicles over the continuous frames need to be recognized through the matching among the objects' feature values. In this paper, we identify objects by binarizing the difference image between a target and a referential image, and the labelling technique. As feature values, we use the center coordinate of the minimum bounding rectangle(MBR) of the identified object and the averages of 1D FFT(fast Fourier transform) coefficients with respect to the horizontal and vertical direction of the MBR. A vehicle is tracked in such a way that the pair of objects that have the highest similarity among objects in two continuous images are regarded as an identical object. The experimental result shows that the proposed method outperforms the existing methods that use geometrical features in tracking accuracy.

Feature Extraction in 3-Dimensional Object with Closed-surface using Fourier Transform (Fourier Transform을 이용한 3차원 폐곡면 객체의 특징 벡터 추출)

  • 이준복;김문화;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.21-26
    • /
    • 2003
  • A new method to realize 3-dimensional object pattern recognition system using Fourier-based feature extractor has been proposed. The procedure to obtain the invariant feature vector is as follows ; A closed surface is generated by tracing the surface of object using the 3-dimensional polar coordinate. The centroidal distances between object's geometrical center and each closed surface points are calculated. The distance vector is translation invariant. The distance vector is normalized, so the result is scale invariant. The Fourier spectrum of each normalized distance vector is calculated, and the spectrum is rotation invariant. The Fourier-based feature generating from above procedure completely eliminates the effect of variations in translation, scale, and rotation of 3-dimensional object with closed-surface. The experimental results show that the proposed method has a high accuracy.

  • PDF

An Automatic Object Extraction Method Using Color Features Of Object And Background In Image (영상에서 객체와 배경의 색상 특징을 이용한 자동 객체 추출 기법)

  • Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.459-465
    • /
    • 2013
  • This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.

Object-based Image Retrieval Using Dominant Co for Pairs (Dominant 컬러쌍 정보를 이용한 객체기반 영상검색)

  • 박기태;문영식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.625-627
    • /
    • 2002
  • 본 논문에서는 질의 영상으로 주어지는 컬러 영상에서 관심있는 객체를 추출한 후 Dominant 컬러쌍 정보를 이용하여 객체정보만을 질의하는 객체기반 영상검색 기법을 제안한다. 기존의 대부분 연구에서는 관심있는 객체정보를 포함하는 영상 전체에 대한 특징값을 추출하여 유사 영상을 검색함으로써 배경으로 인해 검색 성능이 나빠지는 결과가 나타난다. 그러므로, 본 논문에서는 관심있는 객체 정보만을 질의로 사용하고 DB내의 영상들에 대해서도 객체가 존재할 수 있는 후보 영역을 추출한 추 유사도를 측정하는 방법을 제안한다

  • PDF

Edge Feature Extract CBIRS for Car Retrieval : CBIRS/EFI (차량 검색을 위한 측면 에지 특징 추출 내용기반 검색 : CBIRS/EFI)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.75-82
    • /
    • 2010
  • The paper proposed CBIRS/EFI with contents based search technique using edge feature information of the object from image information of the object which is uncertain. In order to search specially efficiently case of partial image information of the object, we used the search technique which extracts outline information and color information in feature information of object. In order to experiment this, we extracted side edge feature information of the vehicle for feature information of the object after capture the car image of the underground garage. This is the system which applies a contents base search by the result which analyzes the image which extracts a feature, an original image to search and a last similar measurement result. This system compared in FE-CBIRS systems which are an existing feature extraction contents base image retrieval system and the function which improves the accuracy and an effectiveness of search rate was complemented. The performance appraisal of CBIRS/EFI systems applied edge extraction feature information and color information of the cars. And we compared a color feature search time, a shape characteristic search time and a search rate from the process which searches area feature information. We extracted the case 91.84% of car edge feature extraction rate. And a average search time of CBIRS/EFI is showing a difference of average 0.4-0.9 seconds than FE-CBIRS from vehicle. color search time, shape characteristic search time and similar search time. So, it was proven with the fact that is excellent.