• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.027 seconds

Feature Extraction Of Content-based image retrieval Using object Segmentation and HAQ algorithm (객체 분할과 HAQ 알고리즘을 이용한 내용 기반 영상 검색 특징 추출)

  • 김대일;홍종선;장혜경;김영호;강대성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • Compared with other features of the image, color features are less sensitive to noise and background complication. Besides, this adding to object segmentation has more accuracy of image retrieval. This paper presents object segmentation and HAQ(Histogram Analysis and Quantization) algorithm approach to extract features(the object information and the characteristic colors) of an image. The empirical results shows that this method presents exactly spatial and color information of an image as image retrieval's feature.

  • PDF

Road Sign Detection with Weather/Illumination Classifications and Adaptive Color Models in Various Road Images (날씨·조명 판단 및 적응적 색상모델을 이용한 도로주행 영상에서의 이정표 검출)

  • Kim, Tae Hung;Lim, Kwang Yong;Byun, Hye Ran;Choi, Yeong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.521-528
    • /
    • 2015
  • Road-view object classification methods are mostly influenced by weather and illumination conditions, thus the most of the research activities are based on dataset in clean weathers. In this paper, we present a road-view object classification method based on color segmentation that works for all kinds of weathers. The proposed method first classifies the weather and illumination conditions and then applies the weather-specified color models to find the road traffic signs. Using 5 different features of the road-view images, we classify the weather and light conditions as sunny, cloudy, rainy, night, and backlight. Based on the classified weather and illuminations, our model selects the weather-specific color ranges to generate Gaussian Mixture Model for each colors, Green, Yellow, and Blue. The proposed method successfully detects the traffic signs regardless of the weather and illumination conditions.

Adaptive Image Content-Based Retrieval Techniques for Multiple Queries (다중 질의를 위한 적응적 영상 내용 기반 검색 기법)

  • Hong Jong-Sun;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.73-80
    • /
    • 2005
  • Recently there have been many efforts to support searching and browsing based on the visual content of image and multimedia data. Most existing approaches to content-based image retrieval rely on query by example or user based low-level features such as color, shape, texture. But these methods of query are not easy to use and restrict. In this paper we propose a method for automatic color object extraction and labelling to support multiple queries of content-based image retrieval system. These approaches simplify the regions within images using single colorizing algorithm and extract color object using proposed Color and Spatial based Binary tree map(CSB tree map). And by searching over a large of number of processed regions, a index for the database is created by using proposed labelling method. This allows very fast indexing of the image by color contents of the images and spatial attributes. Futhermore, information about the labelled regions, such as the color set, size, and location, enables variable multiple queries that combine both color content and spatial relationships of regions. We proved our proposed system to be high performance through experiment comparable with another algorithm using 'Washington' image database.

Robust Scene Change Detection Technique for the Efficient Video Browsing Service (효율적인 비디오 브라우징 제공을 위한 강건한 장면전환 검출 기법의 제안)

  • Lee, Hae-Gun;Rhee, Yang-Won
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.289-292
    • /
    • 2008
  • 본 논문에서는 사용자에게 보다 효율적이고 직관적인 비디오 브라우징 서비스를 제공하기 위하여 비디오 데이터의 종류와 특성에 제한받지 않고 강건하게 적용될 수 있는 장면전환 검출 알고리즘을 제안하고자 한다. 제한된 알고리즘은 명암 값의 급 변화나 객체의 빠른 움직임, 영상의 왜곡 등에 의한 장면전환 검출의 오류를 제거할 수 있으며, 특히 연속된 프레임사이의 강건한 차이 값 추출을 위한 개선된 식을 제안하고, 추출된 차이 값들로부터 변화패턴을 학습하고 특징을 추출함으로서 자동 임계치 결정에 활용하였다. 제안된 방법은 급진적인 장면변화가 많고 플래시라이트와 같은 조명의 변화가 많은 다양한 비디오 데이터를 가지고 실험되었으며, 실험결과 기존의 방법에 비교하여 효율적이고 신뢰할 수 있는 결과 값들을 보여주었다.

  • PDF

Color Image Retrieval using Quad-tree Segmentation Index (사분트리 분할 인덱스를 이용한 컬러이미지 검색)

  • 오석영;홍성용;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.175-177
    • /
    • 2004
  • 최근, 이미지 검색기법에서는 객체추출 방법이나 관심영역 추출방법에 관한 연구가 활발히 이루어지고 있다. 그러나, 컬러 이미지의 경우 색상을 고려한 관심영역 특징추출 방법이나 인덱스 기법은 많이 연구되지 못하고 있다. 따라서, 본 논문에서는 컬러 이미지의 색상을 기반으로 하는 사분트리 분할 인덱스 기법을 제안한다. 사분트리 분할 인덱스 구조는 컬러 이미지의 공간 영역을 계층적인 영역으로 분할하여 각 공간 영역의 평균 색상 갓을 데이터베이스에 저장한다 저장되어진 각 영역의 평균 색상은 검색의 효율성을 높이기 위해 사분트리 인스턴스(Quad-tree distance)를 퍼지 값으로 계산하여 인덱스를 생성한다. 생성된 사분트리 분할 인덱스는 컬러 이미지의 관심영역(Region of Interest)의 색상을 검색할 때 유용하게 사용되며. 검색속도의 향상에 도움을 준다.

  • PDF

An Object-based Stereo Matching Method Using Block-based Segmentation (블록 기반 영역 분할을 이용한 객체 기반 스테레오 정합 기법)

  • Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.5 no.4
    • /
    • pp.257-263
    • /
    • 2004
  • This paper is related to the object-based stereo matching algorithm which makes it possible to estimate inner-region disparities for each segmented region. First, several sample points are selected for effectively representing the segmented region, Next, stereo matching is applied to the small area within segmented region which existed in the neighborhood or each sample point. Finally, inner-region disparities are interpolated using a plane equation with disparity of each selected sample. According to the proposed method, the problem of feature-based method that the depth estimation is possible only in the feature points can be solved through the propagation of the disparity in the sample point into the inside of the region. Also, as selecting sample points in contour of segmented region we can effectively suppress obscurity which is occurred in the depth estimation of the monotone region in area-based methods.

  • PDF

Realtime Smoke Detection using Hidden Markov Model and DWT (은닉마르코프모델과 DWT를 이용한 실시간 연기 검출)

  • Kim, Hyung-O
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • In this paper, We proposed a realtime smoke detection using hidden markov model and DWT. The smoke type is not clear. The color of the smoke, form, spread direction, etc., are characterized by varying the environment. Therefore, smoke detection using specific information has a high error rate detection. Dynamic Object Detection was used a robust foreground extraction method to environmental changes. Smoke recognition is used to integrate the color, shape, DWT energy information of the detected object. The proposed method is a real-time processing by having the average processing speed of 30fps. The average detection time is about 7 seconds, it is possible to detect early rapid.

Energy Minimization Model for Pattern Classification of the Movement Tracks (행동궤적의 패턴 분류를 위한 에너지 최소화 모델)

  • Kang, Jin-Sook;Kim, Jin-Sook;Cha, Eul-Young
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.281-288
    • /
    • 2004
  • In order to extract and analyze complex features of the behavior of animals in response to external stimuli such as toxic chemicals, we implemented an adaptive computational method to characterize changes in the behavior of chironomids in response to treatment with the insecticide, diazinon. In this paper, we propose an energy minimization model to extract the features of response behavior of chironomids under toxic treatment, which is applied on the image of velocity vectors. It is based on the improved active contour model and the variations of the energy functional, which are produced by the evolving active contour. The movement tracks of individual chironomid larvae were continuously measured in 0.25 second intervals during the survey period of 4 days before and after the treatment. Velocity on each sample track at 0.25 second intervals was collected in 15-20 minute periods and was subsequently checked to effectively reveal behavioral states of the specimens tested. Active contour was formed around each collection of velocities to gradually evolve to find the optimal boundaries of velocity collections through processes of energy minimization. The active contour which is improved by T. Chan and L. Vese is used in this paper. The energy minimization model effectively revealed characteristic patterns of behavior for the treatment versus no treatment, and identified changes in behavioral states .is the time progressed.

A Study on Recognition of Moving Object Crowdedness Based on Ensemble Classifiers in a Sequence (혼합분류기 기반 영상내 움직이는 객체의 혼잡도 인식에 관한 연구)

  • An, Tae-Ki;Ahn, Seong-Je;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.95-104
    • /
    • 2012
  • Pattern recognition using ensemble classifiers is composed of strong classifier which consists of many weak classifiers. In this paper, we used feature extraction to organize strong classifier using static camera sequence. The strong classifier is made of weak classifiers which considers environmental factors. So the strong classifier overcomes environmental effect. Proposed method uses binary foreground image by frame difference method and the boosting is used to train crowdedness model and recognize crowdedness using features. Combination of weak classifiers makes strong ensemble classifier. The classifier could make use of potential features from the environment such as shadow and reflection. We tested the proposed system with road sequence and subway platform sequence which are included in "AVSS 2007" sequence. The result shows good accuracy and efficiency on complex environment.

Model-based Camera Calibration for Virtual Production (가상현실 방송 제작을 위한 모델 기반 카메라 보정)

  • Oh, Ju-Hyun;Sohn, Kwang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2007.02a
    • /
    • pp.68-71
    • /
    • 2007
  • 자연스러운 가상현실 제작을 위해서는 정확한 카메라 보정(camera calibration) 과정이 필수적인 선결 조건으로 요구된다. 그러나 기존의 영상처리에 의한 카메라 보정 방식은 특징점 추출에서의 에러 발생과 여러 장의 영상을 촬영해야 하는 등의 단점으로 줌렌즈 카메라 보정에는 사용되기 힘들었다. 본 논문에서는 카메라보정 객체의 모델에 기반하여 카메라 파라미터를 최적화하는 방법으로 카메라 보정을 구현하였다 최적화 방법으로는 경사기반 방식에 비해 국부최적점에 강인한 것으로 알려진 유전자알고리즘(genetic algorithm)을 사용하였다. 카메라 보정 객체에 낮은 공간주파수성분을 보강하고, 목적함수에 영상의 밝기 정보를 포함하며, 유전자알고리즘을 사용함으로써 초기치가 최적점에서 멀리 떨어져있는 경우에도 수렴이 가능함을 실험적으로 확인하였다.

  • PDF