• 제목/요약/키워드: 객체 특성 검출

검색결과 98건 처리시간 0.02초

포켓과 특징 점을 이용한 3차원 단백질 분자 형상인식 (Shape Recognition of 3-D Protein Molecules Using Feature and Pocket Points)

  • 이항찬
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.75-81
    • /
    • 2011
  • 단백질 분자는 포켓 위치에서 유사한 형상을 갖는 다른 분자와 결합되며, 포켓은 단백질 분자의 형상을 묘사하기 위한 참조 점으로 사용될 수 있다. Harris 검출기는 2 차원이나 3차원 객체의 특징 점을 검출하기 위해 널리 사용된다. 특징 점들은 데이터의 변화율이 높은 영역과 포켓 영역에서 발견된다. 일반적으로 포켓 영역은 함몰된 형태로 존재하기 때문에 이 영역에는 다른 영역에 비해 다수의 특징 점들이 존재한다. 특징 점들을 포함하는 voxel cube를 연속적으로 분할함으로써 포켓 영역을 발견할 수 있었고, 포켓 영역의 중심 좌표와 특징 점들 간의 Euclidean 거리를 계산한 후 이들을 크기순으로 정렬 하였다. 정렬된 거리에 대한 그래프는 단백질 분자의 형상과 특징 점들의 분포에 대한 정보를 제공하므로 단백질 분자를 형상별로 분리 할 수 있었다. 본 연구에서는 인위적인 잡음을 단백질 분자에 추가하여 형상이 왜곡된 분자를 얻었고, 왜곡된 분자에 대해서도 95 % 이상의 정확 도로 형상을 인식 할 수 있었다. 정확한 단백질 분자의 형상 인식은 분자들 간의 결합특성을 예측할 수 있는 중요한 정보를 제공한다.

산림병해충 피해의심목 자동탐지 알고리즘 개발 연구 (A study on the development of an automatic detection algorithm for trees suspected of being damaged by forest pests)

  • 이후동;이성희;이영진
    • 한국지리정보학회지
    • /
    • 제25권4호
    • /
    • pp.151-162
    • /
    • 2022
  • 최근 우리나라의 산림은 지속적인 산림재해로 인해 피해가 누적되고 있어 산림을 관리하기 위한 모니터링 기술이 조명받고 있으며, 산림재해 피해대상지의 규모가 큰 지형 특성으로 인해 드론, 인공지능, 빅데이터 등을 활용한 기술들이 연구되고 있다. 본 연구에서는 산림재해의 병해충을 모니터링하기 위해 딥러닝과 드론을 활용하여 산림 병해충 피해 의심목을 자동으로 탐지하는 산림 병해충 자동탐지 알고리즘 개발을 위한 표준 데이터 세트를 구축하였다. 객체검출 알고리즘으로서 YOLO 알고리즘을 활용한 실험결과에서는 YOLOv4-P7 모델이 재현율 69.69%와 정밀도 69.15%로 가장 높게 나타났으며, 이미지 사이즈가 큰 정사영상인 검출대상임을 고려할 때 산림병해충 피해의심목 자동탐지 알고리즘으로 YOLOv4-P7이 적합함을 확인하였다.

얼굴 표정 인식을 위한 유전자 알고리즘 기반 심층학습 모델 최적화 (Optimization of Deep Learning Model Based on Genetic Algorithm for Facial Expression Recognition)

  • 박장식
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.85-92
    • /
    • 2020
  • 심층학습은 많은 양의 데이터셋을 학습에 활용하여 객체 분류, 검출, 분할 등의 영상 분석에 탁월한 성능을 나타내고 있다. 본 논문에서는 데이터셋의 종류가 다양한 얼굴 표정인식 데이터셋들을 활용하여 학습 데이터셋의 특성이 심층학습 성능에 영향을 줄 수 있음을 확인하고, 각 학습 데이터셋에 적합한 심층학습 모델의 구성 요소를 설정하는 방법을 제안한다. 제안하는 방법은 심층학습 모델의 성능에 영향을 주는 구성 요소인 활성함수, 그리고 최적화 알고리즘을 유전 알고리즘을 이용하여 선정한다. CK+, MMI, KDEF 데이터셋에 대해서 널리 활용되고 있는 심층학습 모델의 각 구성 요소별 다양한 알고리즘을 적용하여 성능을 비교 분석하고, 유전 알고리즘을 적용하여 최적의 구성 요소를 선정할 수 있음을 시뮬레이션을 통하여 확인한다.

가상환경의 시뮬레이션을 위한 충돌반응 양상의 논리적 모델링 (A Logical Model of Collision Response for Simulation of the Virtual Environment)

  • 김병주;박종희
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.821-830
    • /
    • 2004
  • 본 논문에서는 지표면을 향해 낙하하는 자유 물체의 충돌 현상에 대해 모델링하고자 한다. 이를 위해 최소한의 근원적인 요소를 찾아서 최대한의 다양성을 제공하고자 한다. 몰입감있는 가상환경 구축을 위해 보다 사실적이고 논리적으로 동작하는 충돌 현상을 표현하는데 설계의 초점을 둔다. 이를 위해, 낙하 물체의 재료(material)적 특성에 대한 범위(domain)를 결정하고 우성력(dominant forte)을 선택할 것이며, 힘과 지표면에 대한 모델링을 구축할 것이다. 이는 충돌 후 발생하는 결과들을 정량적인 면뿐만 아니라 정성적인 면에서도 충족시킬 수 있다. 아울러 기존에 많은 연구가 진행된 충돌 검출 보다는 충돌 반응 양상에 모델링의 초점을 둘 것이다.

AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구 (Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI)

  • 한수연;박대우
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1266-1271
    • /
    • 2022
  • 반려동물 중 반려묘의 비중이 2012년 이후 연평균 25.4%의 증가율을 보이며 증가하는 추세이다. 고양이는 강아지에 비해 야생성이 강하게 남아있기 때문에 질병이 생기면 잘 숨기는 특성이 있다. 보호자가 반려묘가 질병이 있음을 알게 되었을 때는 병이 이미 악화되어진 상태일 수 있다. 반려묘의 식욕부진(식사회피), 구토, 설사, 다음, 다뇨 등과 같은 현상은 당뇨, 갑상선기능항진증, 신부전증, 범백혈구감소증 등 고양이 질병 시 나타나는 증상 중 일부이다. 반려묘의 다뇨(소변 양이 많음), 다음(물 많이 마심), 빈뇨(소변을 자주 봄) 현상을 보호자가 보다 빨리 알아차릴 수 있다면 반려묘의 질병 치료에 크게 도움이 될 것이다. 본 논문에서는 인공지능 디바이스에서 작동하는 1) 자세 예측 DeepLabCut의 Efficient 버전, 2) 객체 검출 YOLO v4, 3) 행동 예측 LSTM 4) 객체 추적은 BoT-SORT를 사용한다. 인공지능 기술을 이용하여 홈 CCTV의 영상에서 반려묘의 행동 패턴 분석과 물그릇의 무게 센서를 통해 반려묘의 다음, 다뇨 및 빈뇨를 예측한다. 그리고, 반려묘 행동 패턴 분석을 통해, 질병 예측 및 이상행동 결과를 보호자에게 리포트 하는, 메인 서버시스템과 보호자의 모바일로 전달하는 애플리케이션을 제안한다.

철근콘크리트 손상 특성 추출을 위한 최적 컨볼루션 신경망 백본 연구 (A Study on Optimal Convolutional Neural Networks Backbone for Reinforced Concrete Damage Feature Extraction)

  • 박영훈
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.511-523
    • /
    • 2023
  • 철근콘크리트 손상 감지를 위한 무인항공기와 딥러닝 연계에 대한 연구가 활발히 진행 중이다. 컨볼루션 신경망은 객체 분류, 검출, 분할 모델의 백본으로 모델 성능에 높은 영향을 준다. 사전학습 컨볼루션 신경망인 모바일넷은 적은 연산량으로 충분한 정확도가 확보 될 수 있어 무인항공기 기반 실시간 손상 감지 백본으로 효율적이다. 바닐라 컨볼루션 신경망과 모바일넷을 분석 한 결과 모바일넷이 바닐라 컨볼루션 신경망의 15.9~22.9% 수준의 낮은 연산량으로도 6.0~9.0% 높은 검증 정확도를 가지는 것으로 평가되었다. 모바일넷V2, 모바일넷V3Large, 모바일넷 V3Small은 거의 동일한 최대 검증 정확도를 가지는 것으로 나타났으며 모바일넷의 철근콘트리트 손상 이미지 특성 추출 최적 조건은 옵티마이저 RMSprop, 드롭아웃 미적용, 평균풀링인 것으로 분석되었다. 본 연구에서 도출된 모바일넷V2 기반 7가지 손상 감지 최대 검증 정확도 75.49%는 이미지 축적과 지속적 학습으로 향상 될 수 있다.

MPEG 비디오의 통계적 특성을 이용한 검색 시스템 (Retrieval System Adopting Statistical Feature of MPEG Video)

  • 유영달;강대성;김대진
    • 전자공학회논문지CI
    • /
    • 제38권5호
    • /
    • pp.58-64
    • /
    • 2001
  • 현재 많은 정보들이 비디오 데이터로 전송 또는 저장되고 있으며 고성능 PC의 보급과 internet과 같은 통신망의 대중화로 이런 비디오 데이터는 급속도로 증가하고 있다. 본 논문에서는 이런 비디오 데이터의 검색을 위하여 비디오 스트립을 분석하여 shot을 찾아내고 이들 중 key frame을 찾는 방법에 대하여 연구하고 이로서 사용자의 질의에 부합하는 비디오를 검색한다. 본 논문에서는 shot 경계 검출을 위해 객체의 움직임에 강인하면서 shot 내에서의 칼라의 변화에 둔감한 새로운 feature를 제안하고, shot frame에서 구한 각 feature들의 통계적 특성을 이용하여 스트립의 특징에 따라 weight를 부가하여 구해진 characterizing value의 시간 변화량을 구한다. 구해진 변화량의 local maxima와 local minima는 비디오 스트림에서 각각 가장 특정적인 frame과 평균적인 frame을 나타낸다. 이 순간의 short frame을 구함으로서 효과적이고 빠른 시간 내에 key frame을 추출한다. 추출되어진 key frame에 대하여 원 영상을 복원한 후, 색인을 위하여 다수의 parameter를 구하고, 사용자가 질의한 영상에 대해서 이들 parameter를 구하여 key frame들과 가장 유사한 대표영상들을 검색한다. 실험결과 일반적인 방법보다 더 나은 결과를 보였고, 높은 검색율을 보였다.

  • PDF

영상 내 차량의 위치 및 촬영 각도에 강인한 차량 번호판 인식 시스템 (A License Plate Recognition System Robust to Vehicle Location and Viewing Angle)

  • 홍성은;황성수;김성대
    • 전자공학회논문지
    • /
    • 제49권12호
    • /
    • pp.113-123
    • /
    • 2012
  • 최근 지능형 교통 시스템을 다양한 상황 및 환경에 적용하려는 시도가 증가함에 따라, 다수의 지능형 교통 시스템에서 사용되고 있는 차량 번호판 인식 과정이 입력영상 내 차량의 위치 및 촬영 각도와 관계없이 정확하게 이루어질 필요성이 있다. 본 논문에서는 현행 번호판의 규격정보를 활용하여 오검출된 번호판 후보 영역의 제거 및 번호판 내 글자추출을 수행하고, 한글 특성을 고려한 글자인식을 수행하는 차량 번호판 인식 시스템을 제안한다. 제안하는 시스템은 입력영상에서 검출한 번호판 후보 영역들에 대해서 기울기 보정을 수행한 후, 후보 영역 내 글자로 판명되는 객체의 위치 및 형태 정보를 번호판 규격정보와 비교 검증하는 과정을 거쳐 오검출된 번호판 영역을 제거한다. 또한 글자추출 단계에서는 영역 내 밝기 변화를 고려한 이진화를 수행한 뒤, 번호판 규격정보 및 번호판 영역의 종횡비, 배경색, 투영정보 등을 종합적으로 활용하여 번호판 영역 내 글자를 정확하게 추출한다. 그리고 번호판 영역 내 글자들 중 오인식률이 높은 한글의 인식에 있어서, 형태적 유사성으로 그룹을 나눈 뒤, 주요 특징점들을 토대로 계층을 좁혀 나가는 super-class 개념을 적용하여 한글 인식을 수행한다. 성능 검증을 위해 다양한 배경에서 촬영된 영상에 대해서 실험을 수행한 결과 제안하는 번호판 인식 시스템이 영상 내 차량의 위치 및 촬영 각도의 변화에 강인한 것을 확인할 수 있었다.

3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템 (HMM-based Intent Recognition System using 3D Image Reconstruction Data)

  • 고광은;박승민;김준엽;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.135-140
    • /
    • 2012
  • 대뇌 상의 mirror neuron system은 시각 정보에 기반한 모방학습 기능을 담당한다. 관측자의 mirror neuron system 영역을 관찰할 때, 행위자가 수행하는 목적성 행위의 전체가 아닌, 부분적으로 가려지거나 보이지 않는 영역을 포함하는 경우에도 해당 영역의 뉴런이 발화되는 과정을 통해 전체 행동의 의도를 유추할 수 있다. 이러한 모방학습 기능을 3D 비전 기반 지능 시스템에 적용하는 것이 본 논문의 목표이다. 본 연구실에서 선행 연구된 스테레오 카메라를 기반으로 획득된 3차원 영상에 대한 복원을 수행한다. 이 때 3차원 입력영상은 부분적으로 가려진 영역을 포함하는 손동작의 순차적 연속영상이다. 복원 결과를 기반으로 가려진 영역을 내포한 행위에 대하여 LK optical flow, unscented Kalman filter를 이용한 특징검출을 수행하고 의도인식의 수행을 위해, Hidden Markov Model을 활용한다. 순차적 입력데이터에 대한 동적 추론 기능은 가려진 영역을 포함한 손동작 인식 수행에 있어 적합한 특성을 가진다. 본 논문에서 제안하는 의도 인식을 위해 선행 연구에서 복원 영상에서의 객체의 윤곽선 및 특징 검출을 시뮬레이션 하였으며, 검출 특징에 대한 시간적 연속 특징벡터를 생성하여 Hidden Markov Model에 적용함으로써, 의도 패턴에 따른 손동작 분류 시뮬레이션을 수행하였다. 사후 확률 값의 형태로 손 동작 분류 결과를 얻을 수 있었으며, 이를 통한 성능의 우수함을 입증하였다.

PCA 기반 변환을 통한 다해상도 피처 맵 압축 방법 (A Feature Map Compression Method for Multi-resolution Feature Map with PCA-based Transformation)

  • 박승진;이민훈;최한솔;김민섭;오승준;김연희;도지훈;정세윤;심동규
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.56-68
    • /
    • 2022
  • 본 논문에서는 VCM을 위한 다해상도 피처 맵에 대한 압축 방법을 제안한다. 제안하는 압축 방법은 PCA 기반의 변환을 통해 다해상도 피처 맵의 채널 및 해상도 계층 간 중복성을 제거하며 변환에 사용된 기저 벡터와 평균 벡터 그리고 변환을 통해 얻어진 변환 계수를 각각의 특성에 따라 VVC 기반 부호화기와 DeepCABAC을 통하여 압축한다. 제안하는 방법의 성능을 측정하기 위하여 OpenImageV6와 COCO 2017 validation set에 대하여 객체 검출 성능을 평가하며, MPEG-VCM 앵커 및 본 논문에서 제안하는 피처 맵 압축 앵커 대비 bpp와 mAP를 BD-rate 관점에서 비교한다. 실험 결과, 제안하는 방법은 OpenImageV6에서 피처 맵 압축 앵커 대비 25.71%의 BD-rate 성능 향상을 보이며, 특히 COCO 2017 validation set의 크기가 큰 객체들에 대해서 MPEG-VCM 앵커 대비 최대 43.72%의 BD-rate 성능이 향상됨을 보인다.