• Title/Summary/Keyword: 객체 트리

Search Result 274, Processing Time 0.024 seconds

Debelppment of C++ Compiler and Programming Environment (C++컴파일러 및 프로그래밍 환경 개발)

  • Jang, Cheon-Hyeon;O, Se-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.831-845
    • /
    • 1997
  • In this paper,we proposed and developed a compiler and interactive programming enviroments for C++ wich is mostly worth of nitice among the object -oriented languages.To develope the compiler for C++ we took front=end/back-end model using EM virtual machine.In develpoing Front-End,we formailized C++ gram-mar with the context semsitive tokens which must be manipulated by dexical scanner and designed a AST class li-brary which is the hierarchy of AST node class and well defined interface among them,In develpoing Bacik-End,we proposed model for three major components :code oprtimizer,code generator and run-time enviroments.We emphasized the retargatable back-end which can be systrmatically reconfigured to genrate code for a variety of distinct target computers.We also developed terr pattern matching algorithm and implemented target code gen-erator which produce SPARC code.We also proposed the theroy and model for construction interative pro-gramming enviroments. To represent language features we adopt AST as internal reprsentation and propose uncremental analysis algorithm and viseal digrams.We also studied unparsing scheme, visual diagram,graphical user interface to generate interactive environments automatically Results of our resarch will be very useful for developing a complier and programming environments, and also can be used in compilers for parallel and distributed enviroments.

  • PDF

SOM-Based $R^{*}-Tree$ for Similarity Retrieval (자기 조직화 맵 기반 유사 검색 시스템)

  • O, Chang-Yun;Im, Dong-Ju;O, Gun-Seok;Bae, Sang-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.507-512
    • /
    • 2001
  • Feature-based similarity has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects. the performance of conventional multidimensional data structures tends to deteriorate as the number of dimensions of feature vectors increase. The $R^{*}-Tree$ is the most successful variant of the R-Tree. In this paper, we propose a SOM-based $R^{*}-Tree$ as a new indexing method for high-dimensional feature vectors. The SOM-based $R^{*}-Tree$ combines SOM and $R^{*}-Tree$ to achieve search performance more scalable to high-dimensionalties. Self-Organizingf Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. We experimentally compare the retrieval time cost of a SOM-based $R^{*}-Tree$ with of an SOM and $R^{*}-Tree$ using color feature vectors extracted from 40,000 images. The results show that the SOM-based $R^{*}-Tree$ outperform both the SOM and $R^{*}-Tree$ due to reduction of the number of nodes to build $R^{*}-Tree$ and retrieval time cost.

  • PDF

Adaptive Row Major Order: a Performance Optimization Method of the Transform-space View Join (적응형 행 기준 순서: 변환공간 뷰 조인의 성능 최적화 방법)

  • Lee Min-Jae;Han Wook-Shin;Whang Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.345-361
    • /
    • 2005
  • A transform-space index indexes objects represented as points in the transform space An advantage of a transform-space index is that optimization of join algorithms using these indexes becomes relatively simple. However, the disadvantage is that these algorithms cannot be applied to original-space indexes such as the R-tree. As a way of overcoming this disadvantages, the authors earlier proposed the transform-space view join algorithm that joins two original- space indexes in the transform space through the notion of the transform-space view. A transform-space view is a virtual transform-space index that allows us to perform join in the transform space using original-space indexes. In a transform-space view join algorithm, the order of accessing disk pages -for which various space filling curves could be used -makes a significant impact on the performance of joins. In this paper, we Propose a new space filling curve called the adaptive row major order (ARM order). The ARM order adaptively controls the order of accessing pages and significantly reduces the one-pass buffer size (the minimum buffer size required for guaranteeing one disk access per page) and the number of disk accesses for a given buffer size. Through analysis and experiments, we verify the excellence of the ARM order when used with the transform-space view join. The transform-space view join with the ARM order always outperforms existing ones in terms of both measures used: the one-pass buffer size and the number of disk accesses for a given buffer size. Compared to other conventional space filling curves used with the transform-space view join, it reduces the one-pass buffer size by up to 21.3 times and the number of disk accesses by up to $74.6\%$. In addition, compared to existing spatial join algorithms that use R-trees in the original space, it reduces the one-pass buffer size by up to 15.7 times and the number of disk accesses by up to $65.3\%$.

Development of a Real-Time Mobile GIS using the HBR-Tree (HBR-Tree를 이용한 실시간 모바일 GIS의 개발)

  • Lee, Ki-Yamg;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.73-85
    • /
    • 2004
  • Recently, as the growth of the wireless Internet, PDA and HPC, the focus of research and development related with GIS(Geographic Information System) has been changed to the Real-Time Mobile GIS to service LBS. To offer LBS efficiently, there must be the Real-Time GIS platform that can deal with dynamic status of moving objects and a location index which can deal with the characteristics of location data. Location data can use the same data type(e.g., point) of GIS, but the management of location data is very different. Therefore, in this paper, we studied the Real-Time Mobile GIS using the HBR-tree to manage mass of location data efficiently. The Real-Time Mobile GIS which is developed in this paper consists of the HBR-tree and the Real-Time GIS Platform HBR-tree. we proposed in this paper, is a combined index type of the R-tree and the spatial hash Although location data are updated frequently, update operations are done within the same hash table in the HBR-tree, so it costs less than other tree-based indexes Since the HBR-tree uses the same search mechanism of the R-tree, it is possible to search location data quickly. The Real-Time GIS platform consists of a Real-Time GIS engine that is extended from a main memory database system. a middleware which can transfer spatial, aspatial data to clients and receive location data from clients, and a mobile client which operates on the mobile devices. Especially, this paper described the performance evaluation conducted with practical tests if the HBR-tree and the Real-Time GIS engine respectively.

  • PDF