• 제목/요약/키워드: 객체 윤곽 검출

검색결과 44건 처리시간 0.049초

배경화면 변화를 이용한 객체의 윤곽점 검출 (Object Boundary Point Detection Using Background Image Change)

  • 백주호;이창수;오해석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.563-566
    • /
    • 2003
  • 인터넷 시대에 접어들면서 웹 카메라를 이용한 보안 시스템의 개발이 활발하다 원격지에 설치된 카메라가 보내준 영상을 통하여 현재의 상황을 파악할 수 있으며 적절한 조치를 웹을 통해 취할 수 있다. 본 논문에서는 카메라로부터 입력되어지는 입력영상과 배경영상의 차를 이용하여 움직임 검출하는 방법을 제안한다. 또한 배경영상은 시간에 따라 변화하기 때문에 변화된 시점부터 배경이미지 픽셀을 교체 해준다. 카메라에서 받아오는 영상을 배경영상과 입력영상으로 구분 한 다음 두 영상의 차를 구하여 영상의 변화점을 찾는다. 픽셀 검사는 모든 픽셀을 연산에 참여하는 방식을 탈피하여 일정한 간격을 두고 이미지의 픽셀을 검색하여 효율적인 객체의 윤곽점을 추출한다.

  • PDF

서베일런스 네트워크에서 적응적 색상 모델을 기초로 한 실시간 객체 추적 알고리즘 (Real-Time Object Tracking Algorithm based on Adaptive Color Model in Surveillance Networks)

  • 강성관;이정현
    • 디지털융복합연구
    • /
    • 제13권9호
    • /
    • pp.183-189
    • /
    • 2015
  • 본 논문은 서베일런스 네트워크에서 영상의 색상 정보를 이용한 객체 추적 방법을 제안한다. 이 방법은 적응적인 색상 모델을 이용한 객체 검출을 수행한다. 객체 윤곽선 검출은 객체 인식과 같은 응용에서 중요한 역할을 수행한다. 실험 결과는 색상과 크기에서 객체의 다양한 변화가 있을 때에도 성공적인 객체 검출을 증명한다. 실시간으로 객체를 검출하는 응용 분야에서 대량의 영상 데이터를 전송할 때 색상 분포의 형태를 찾아내는 것이 가능하다. 객체의 특정 색상 정보는 입력 영상에서 동적으로 변화하는 색상에서 자주 수정되어진다. 그래서, 이 알고리즘은 해당 추적 영역 안에서 객체의 추적 영역 정보를 탐지하고 그 객체의 움직임만을 추적한다. 실험을 통해, 본 논문은 어떤 이상적인 상황하에서 제안하는 객체 추적 알고리즘이 다른 방법보다 더 강인한 면이 있다는 것을 보여준다.

차영상을 이용한 블록기반 객체 추적 방법 (The Object tracking method based on the block using a difference image)

  • 김동우;송영준;김애경;안재형
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.605-607
    • /
    • 2009
  • 본 논문은 감시 시스템의 객체 추적 시, 정확한 객체 추출을 위해 블록 기반으로 객체를 추적하는 방법을 제안한다. 객체 움직임 추적은 주어진 환경에 따라 변수가 많고, 변수를 대처하는 알고리즘을 많이 추가 할 경우 실시간 추적에 어려움이 발생한다. 특히 배경이 조명이나 바람 등의 환경적 요인에 의해 변화되는 문제는 객체를 추적하는데 가장 큰 문제점이다. 특히 사람이나 멧돼지의 경우 움직임에 의한 객체 구성 요소의 흔들림에 의해 고정 블록의 연산에 의해 움직임 객체를 추적할 때 정확한 객체의 윤곽선을 검출하기 힘들다. 따라서 연속되는 프레임에서 전체 화면의 차영상을 이용하여 움직임 관심 영역을 설정하고, 관심 영역에 해당하는 블록들을 분석하였다. 이를 기반으로 움직임 객체의 최외곽 사각형의 객체 영역을 추출하여 기존 고정 블록 방법에 의한 객체 추적보다 좀 더 정확하게 객체를 추출하고 추적할 수 있다.

  • PDF

주성분 분석을 이용한 마커 검출 및 인식 시스템 (A Marker Detection and Recognition System based on Principal Component Analysis)

  • 강선경;소인미;김영운;정성태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.129-132
    • /
    • 2006
  • 본 논문에서는 카메라 영상으로부터 사각형 형태의 마커를 검출하고 인식하는 방법을 제안한다. 본 논문에서는 사각형 형태의 마커 검출을 위하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화 한다. 근사화된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법을 이용하여 사각형 마커 영상으로부터 특징 벡터를 추출하고 표준 마커에 대한 특징 벡터와의 최소 거래법에 의해 마커의 종류를 인식한다. 인식 실험 결과 마커의 종류가 50개일 때에 최대 98%의 인식률을 얻을 수 있었다.

  • PDF

형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식 (Identifiers Recognition of Container Image Using Morphological Characteristic and FCM-based Fuzzy RBF Networks)

  • 김태형;성원구;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.252-257
    • /
    • 2007
  • 우리나라의 항만은 수 출입화물의 99.5%를 처리하며, 육로 및 철도 수송 물동량의 기종점 역할을 수행하는 중요한 곳으로서 항만 물동량의 신속한 처리와 자동화 시스템에 의한 비용절감은 엄청난 효과를 가져온다. 따라서 본 논문에서는 항만에서 취급하는 컨테이너를 자동으로 식별할 수 있는 자동화 방법을 제안한다. 실제 컨테이너 영상을 그레이 영상으로 변환한 후, 프리윗 마스크(Prewitt-Mask)를 적용하여 윤곽선을 추출하고 컨테이너를 식별할 수 있는 개별 식별자의 형태학적 특징 정보를 이용하여 식별자 후보영역을 검출한다. 검출된 식별자 후보영역은 개별 식별자 영역외에 잡음 영역이 포함되어 있으므로 4방향 윤곽선 추적 알고리즘과 Grassfire 알고리즘을 적용하여 잡음을 제거하고 개별 식별자들을 각각 객체화한다. 잡음이 제거된 식별자 후보 영역에서 객체화 한 개별 식별자는 컨테이너 식별을 위해 FCM 기반 퍼지 RBF 네트워크를 적용하여 인식한다. 본 논문에서 제안한 컨테이너 식별자 인식 방법의 성능을 평가하기 위해 실제 컨테이너 영상 300장을 대상으로 실험한 결과, 기존의 방법보다 인식 성능이 개선되었음을 확인할 수 있었다.

  • PDF

윤곽선과 컬러 분포를 이용한 비디오 분할과 비디오 브라우징 (Video Segmentation and Video Browsing using the Edge and Color Distribution)

  • 허승;김우생
    • 한국정보처리학회논문지
    • /
    • 제4권9호
    • /
    • pp.2197-2207
    • /
    • 1997
  • 본 논문에서는 비디오 프레임들의 윤곽선과 컬러 분포를 사용한 비디오를 분할 하는 방법을 제안하며 분할된 장면의 정보를 사용하여 비디오 브라우징을 구현하였다. 비디오를 분할하기 위한 방법으로는 HSV 162개의 색상을 가진 히스토그램과 자동 임계값으로 산출된 윤곽선을 사용하였고 각 장면들의 객체 위치와 색상 분포 등의 특성을 고려하였다. 검출된 장면들을 계층적인 브라우저와 장면 기반 브라우저를 사용해 비디오를 브라우징할 수 있도록 하였다. 또한 본 논문에서는 제안하는 장면 변화 검출 방법이 기존의 색상 분포만을 사용하는 히스토그램의 방법에 비해 움직임에 보다 견고하고, 빛의 영향을 최소화 할 수 있음을 다양한 종류의 비디오 데이터를 통해 보였다.

  • PDF

원형 객체의 기하학적 특성을 이용한 고속 동공 검출 (A Fast Pupil Detection Using Geometric Properties of Circular Objects)

  • 곽노윤
    • 디지털융복합연구
    • /
    • 제11권2호
    • /
    • pp.215-220
    • /
    • 2013
  • 현의 수직이등분선은 원의 중심을 지나고 임의의 두 현의 수직이등분선들의 교점은 중심이라는 것은 잘 알려진 원의 기하학적 특성이다. 본 논문은 홍채 분할을 위해 동공 영역을 검출할 시, 이러한 원의 기하학적 특성을 이용하여 동공의 중심과 반경을 고속으로 검출할 수 있는 고속 동공 검출 방법에 관한 것이다. 제안된 방법은 인간의 안구 영상에서 수리 형태학 연산을 통해 동공의 원형 윤곽 후보점들을 추출한 후, 원형 윤곽 상의 네 점을 이용하여 두 개의 현을 구하고 이 두 현의 수직이등분선들 간의 교점을 원의 중심으로 삼음으로써 동공의 중심과 반경을 고속으로 검출할 수 있는 것이 특징이다. 제안된 방법은 안구 영상에서 고속으로 동공의 반경과 중심을 검출할 수 있을 뿐만 아니라 부분적으로 가려진 동공도 검출할 수 있다.

피사계 심도가 낯은 이미지에서 웨이블릿 기반의 자동 관심 영역 추출 (An Automatic Region-of-Interest Extraction based on Wavelet on Low DOF Image)

  • 박순화;강기준;서영건;이부권
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.215-218
    • /
    • 2009
  • 본 논문에서는 웨이블릿 변환 된 고주파 서브밴드들의 에지 정보를 이용하여 관심 객체 영역을 고속으로 자동 검출해주는 새로운 알고리즘을 제안하였다. 제안된 방법에서는 에지정보를 이용하여 블록단위의 4-방향 객체 윤곽 탐색 알고리즘(4-DOBS)을 수행하여 관심객체를 검출한다. 전체 이미지는 $64{\times}64$ 또는 $32{\times}32$ 크기의 코드 블록으로 먼저 나누어지고, 각 코드 블록 내에 에지들이 있는지 없는지에 따라 관심 코드블록 또는 배경이 된다. 4-방향은 바깥쪽에서 이미지의 중앙으로 탐색하여 접근하며, 피사계 심도가 낮은 이미지는 중앙으로 갈수록 에지가 발견된다는 특징을 이용한다. 기존 방법들의 문제점 이였던 복잡한 필터링 과정과 영역병합 문제로 인한 높은 계산도를 상당히 개선시킬 수 있었다. 또한 블록 단위의 처리로 인하여 실시간 처리를 요하는 응용에서도 적용 가능 하였다.

  • PDF

Snake 모델을 이용한 다중 이동 객체 검출 및 추적 (Multiple Moving Objects Detection and Tracking Using Snake Model)

  • 우장명;김성동;최기호
    • 한국ITS학회 논문지
    • /
    • 제2권2호
    • /
    • pp.85-95
    • /
    • 2003
  • 본 논문은 Snake 모델을 이용하여 동영상에서 주위 환경 변화에 적응 가능한 다중 이동 객체 추적 시스템을 제안하였다. Snake 모델은 배경이 복잡한 영상에 대해선 객체의 윤곽선을 정확히 표현하지 못하므로 영상분할 시 초기 위치에 따라 민감하게 영향을 받는다. 제안된 시스템은 프레임간의 차(difference)영상을 이용하여 배경영상을 획득하고, 픽셀의 인접성을 조사하여 객체를 분할하고 위치 특징 값을 구하며, 분할된 특징 값들을 Snake모델의 초기 위치 값으로 부여함으로써 초기 위치 값에 민감한 Snake 모델을 개선하였다 또한 본 시스템은 복잡한 배경 영상을 단순화하고, Snake를 이루는 각 정점들을 객체의 위치로 놓이게 함으로써 탐색 공간을 줄였다. 30fps로 저장된 AVI파일을 적용함으로써 다중 이동차량 추적 시스템으로의 응용 가능함을 보였다.

  • PDF

컬러 분산 에너지를 이용한 확장 스네이크 알고리즘 (Extended Snake Algorithm Using Color Variance Energy)

  • 이승태;한영준;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.83-92
    • /
    • 2009
  • 본 논문에서는 컬러 영상에서 관심객체를 분할하기 위해 컬러 분산 에너지를 이용하는 확장 스네이크 알고리즘을 제안한다. 기존 스네이크 알고리즘은 영상 내에 존재하는 다양한 에너지들을 정의하여 영상을 관심 객체와 배경으로 분할한다. 스네이크의 성능은 구성하는 에너지의 특성에 따라 주로 좌우된다. 능동 윤곽선 모델인 일반적인 스네이크 알고리즘은 적용이 쉽고 분석이 용이한 영상의 밝기 정보를 주요 에너지로 사용한다. 그러나 영상밝기의 미분연산이나 에지검출과 관련된 에너지는 잡음에 민감하고 배경이 복잡해지면 성능이 좋지 않은 단점을 가지고 있다. 제안하는 알고리즘은 분할 영역의 컬러 분산을 스네이크의 영상 에너지에 추가함으로써 복잡한 배경에서도 관심객체를 효율적으로 분할한다. 제안하는 확장 스네이크 알고리즘의 성능을 단순한 배경과 복잡한 배경을 갖는 컬러 영상에서 관심객체를 분할하는 다양한 실험을 통해서 입증하였다. 그 결과 정확도 면에서 약 12.42 %의 향상된 성능을 보였다.