Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.754-756
/
2004
본 논문에서는 칸투어 추적의 정확도 향상을 위하여 배경이 제거된 에지 중에서 실제로 추적하고자 하는 객체의 경계선에 존재하는 에지들을 선택하는 방법을 제안한다 우리는 전 프레임에 존재하는 객체 칸투어의 수직 방향 그래디언트를 계산한다. 또한 다양한 크기를 가진 면적의 개념을 사용한 그래디언트 계산은 노이즈에 의한 영향이나 작은 체크무늬의 텍스쳐를 가진 장면에서도 정확하게 객체의 경계선에 존재하는 에지를 선택할 수 있게 한다. 우리는 이렇게 다양한 크기로 계산된 그래디언트값들은 가중치를 사용하여 합으로 계산하고 이 값이 큰 에지들을 경계선에 존재하는 에지로 고려한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.91-93
/
2004
이동 객체의 현재와 미래 위치 질의에 최적화된 색인 구조로써 TPR-트리가 있다 TPR-트리는 기존의 공간 색인 구조와 달리 이동 객체와 경계 사각형을 참조 위치와 속도 벡터를 매개 변수로 한 시간에 대한 선형 함수 형태로 모델링 함으로써 갱신 비용을 줄이고 현재 및 가까운 미래 위치 정보의 예측을 가능하도록 한다 . 하지만 TPR- 트리는 시간의 정파에 따라 경계 사각형이 선형적으로 환장됨으로 인해 경계 사각형 내의 객체를 제외한 나머지 공간인 사장 공간과 경계 사각 혈들 간의 겹침 현상을 증가시켜 정의 성능이 떨어진다는 단점을 가진다. 본 논문에서는 질의 성능을 향상시키기 위하여 경계 사각형 내의 이동 객체들이 이동함에 따라 변경되는 최소 경계 사각형 (MBR: Minimim Bounding Rectangle)을 베지어 곡선 함수를 이용하여 근사함으로써 사장 공간을 줄이는 적응 경계 사각형 (ABR: Adaptive Bounding Rectangle) 기법을 제안한다.
The paper presents a new way of visual descriptor for deformable object retrieval on the basis of partition based description. The proposed descriptor technology partitions a given object into boundary area and interior area and extracts a descriptor from each area. The final descriptor combines these descriptors. From a given image, deformable object is segmented. The center position of the deformable object is calculated. The object is partitioned into N × N blocks on the basis of the given center position. Blocks are classified as boundary area and interior area depending on the pixels in the block. The proposed descriptor consists of extracted MPEG-7 dominant descriptors from both the boundary and interior area. The performance of proposed method is tested on a database of 1,973 handbag images constructed with view point changes. ARR (Average Retrieval Rate) is used for the retrieval accuracy of the proposed algorithm, compared with MPEG-7 dominant color descriptor.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.11a
/
pp.25-28
/
2012
본 논문에서는 키넥트(Kinect)에서 획득한 깊이 영상의 품질을 향상시키는 기법을 제안한다. 키넥트는 마이크로소프트사에서 출시한 카메라로 깊이 영상과 컬러 영상을 획득 할 수 있다. 하지만 적외선 패턴을 이용한 깊이 영상의 획득 방법의 한계로 인해 객체의 경계 주변으로 홀 및 잡음이 생긴다. 따라서 정확한 깊이 영상을 얻기 위해서는 깊이 영상의 품질 향상이 필수적이다. 일반적으로 깊이 영상의 홀을 채울 때, 인페인팅(inpainting) 또는 결합형 양방향 필터(joint bilateral filter) 등의 기법을 사용한다. 그러나 이러한 기법들의 경우 한 장의 영상만을 이용하기 때문에 객체 경계 주변의 흔들림 현상을 보정할 수 없다. 제안하는 기법에서는 먼저 수행속도가 빠른 가우시안 필터를 이용하여 경계 주변의 홀을 채운다. 이전 프레임의 컬러 영상을 그레이 영상으로 변환한 다음에 그레이 영상과 깊이 영상의 값의 변화를 분석하여 흔들림 화소를 찾아 이전 깊이 영상들 중 최대 화소 값으로 변환함으로써 깊이 영상의 경계 흔들림 현상을 줄일 수 있다. 실험을 통해 제안하는 기법이 기존의 방법들 보다 우수하다는 것을 확인하였다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.11A
/
pp.1098-1103
/
2005
The edge and contour information are very much appreciated by the human visual systems and are responsible for our perceptions and recognitions. Therefore, if edge information is integrated during extracting video objects, we can generate boundaries of oects closer to human visual systems for multimedia applications such as interaction between video objects, object-based coding, and representation. Most of object extraction methods are difficult to implement real-time systems due to their iterative and complex arithmetic operations. In this paper, we propose a VLSI architecture integrating edge information to extract video objects for precisely located object boundaries. The proposed architecture can be easily implemented into hardware due to simple arithmetic operations. Also, it can be applied to real-time object extraction for object-oriented multimedia applications.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.224-227
/
2022
객체 분류는 입력으로 주어진 이미지에 포함된 객체의 종류를 판단하는 기술이다. 대표적인 딥러닝 기반의 객체 분류 방법으로서 Faster R-CNN[2], YOLO[3] 등의 모델이 개발되었으나, 여전히 성능 향상의 여지가 있다. 본 연구에서는 각도 마진 손실 함수를 기존의 몇 가지 객채 분류 모델에 적용하여 성능 향상을 유도한다. 각도 마진 손실 함수는 얼굴 인식 모델인 SphereFace [4]에서 제안한 방법으로, 얼굴 인식과 같이 단일 도메인의 데이터셋을 분류하는 문제를 풀기 위해 제안되었다. 이는 기존 소프트맥스 함수에서 클래스 결정 경계선에 마진을 주는 방식으로 클래스 간의 구분 능력을 향상시킨다. 본 논문은 각도 마진 손실 함수를 CIFAR10, CIFAR100 데이터셋의 분류 문제에 적용하였으며 ResNet, EfficientNet, MobileNet 등의 백본 네트워크로 실험하여 평균적으로 mAP 성능이 향상되는 것을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.89-91
/
2019
객체 추적 기술은 컴퓨터 비전 분야에서 활발하게 연구되고 있는 분야로, 인간-컴퓨터 상호작용(HCI)이나 로보틱스, 그리고 자율주행 자동차와 같은 곳에 유용하게 사용될 수 있다. 그중에서도 열화상 객체 추적 기술은 빛이 전혀 없는 어두운 밤에도 적용 가능하기 때문에, 감시 시스템이나 사고 현장의 구조 상황, 또는 군사적 응용에 더욱 유용하다. 그러나 일반적으로 열화상 영상은 컬러 영상보다 해상도가 낮고, 객체의 경계가 흐릿하며, 텍스쳐가 거의 없다는 점 때문에 기존 추적 방법들의 성능 저하의 원인이 된다. 이에 본 논문은 기존 Correlation Filter 기반 추적기에 객체성 특징을 함께 이용하여, 열화상 영상에서의 객체 추적 성능을 향상 시키는 방법을 제안하였다. 또한 실험을 통해 기존 방법보다 열화상 영상에서의 객체 추적 성능이 향상된 것을 보였다.
비디오 분할은 샷 경계 검출이라고도 하는데, 비디오를 계층적이고 구조적인 형태로 표현하기 위하여 영상, 문자, 오디오와 같은 매체 속에 포함되어 있는 내용들을 특징별로 분석하여 계층별로 분류하는 작업을 말한다. 본 논문에서는 카메라와 객체의 모션에 보다 강건하고 보다 정확한 결과를 산출하여 충분한 공간 정보를 가지는 지역적 $X^2$-히스토그램 비교 방법을 이용하여 샷 경계를 검출한다. 또한 영상처리에서 영상의 명암 값 향상을 위하여 사용되는 로그함수와 상수를 변형하여 차이 값에 적용하는 정규화 방법을 제시한다. 그리고 샷 경계 검출 알고리즘을 제시하여 일반적인 샷과 갑작스런 샷의 특징을 기반으로 검출한다.
Kim, Won-Tae;Kim, Hak-Cheol;Li, Ki-Joune;Ahn, Byeung-Ik;Kim, Seung-Ryong
Journal of Korean Society for Geospatial Information Science
/
v.7
no.1
s.13
/
pp.41-52
/
1999
In order to correct mismatches between neighboring digital maps, the middle line method has been widely used. However, it may result in not only a corruption of the topological consistency between the objects near to boundaries but also degeneration of accuracy. In this paper, we propose two edge-matching methods to overcome the problem of the middle line method. The first method is based on the rubber sheeting, which performs an elastic transformation for the objects located around the boundaries. The second method transforms the geometry of objects by the function of the distance from the boundary. These methods have important advantages that they preserve the topology of the original maps and improve tile accuracy, compared with the previous methods.
Journal of the Korea Society of Computer and Information
/
v.12
no.2
s.46
/
pp.103-109
/
2007
In this paper, we detect shot boundaries using $X^2$-histogram comparison method which have enough spatial information that is more robust to the camera or object motion and produce more precise results. Also, we present normalization method to change Log-Formula and constant that is used for contrast enhancement of image in image processing and apply in difference value. And, present shot boundary detection algorithm to detect shot boundary based on general shot and abrupt shot's characteristic.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.