• Title/Summary/Keyword: 개체명 사전 구축

Search Result 41, Processing Time 0.019 seconds

Title Named Entity Recognition based on Automatically Constructed Context Patterns and Entity Dictionary (자동 구축된 문맥 패턴과 개체명 사전에 기반한 제목 개체명 인식)

  • Lee, Joo-Young;Song, Young-In;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.40-45
    • /
    • 2004
  • 본 논문에서는 영화명, 도서명, 음악명 등의 제목 개체명 인식을 위한 새로운 방법에 대해 기술한다. 제목 개체명은 개체명 내부에 기존 MUC에서 분류한 인명, 지명, 기관명 등과 같은 일반적인 개체명과는 달리, 철자 자질 등 내부 자질을 사용하기 어려우며, 제목 개체명 부착 말뭉치가 없기 때문에 기존 연구에서 좋은 성능을 보인 방법들을 적용하기는 힘들다. 이러한 문제를 해결하기 위해 본 논문에서는 원시 말뭉치에서 자동으로 구축한 문맥 패턴 정보와 개체명 사전을 사용하여 제목 개체명을 인식하는 방법을 제안한다. 패턴과 제목 개체명 사전 구축을 위해, 사전 정보를 이용한 패턴 확장과 이렇게 구축된 패턴 정보를 사용한 사전 확장 단계를 반복 수행하여 문맥 패턴과 제목 개체명 사진을 점진적으로 증가시키는 방법을 사용하였으며, 이러한 정보가 제목 개체명 인식에 도움이 됨을 실험적으로 입증하였다.

  • PDF

A Semi-automatic Annotation Tool based on Named Entity Dictionary (개체명 사전 기반의 반자동 말뭉치 구축 도구)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF

A Semi-automatic Annotation Tool based on Named Entity Dictionary (개체명 사전 기반의 반자동 말뭉치 구축 도구)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF

Automatic Construction of a Named Entity Dictionary for Named Entity Recognition (개체명 인식을 위한 개체명 사전 자동 구축)

  • Jeon, Wonpyo;Song, Yeongkil;Choi, Maengsik;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.82-85
    • /
    • 2013
  • 개체명 인식기에 대한 연구에서 개체명 사전은 필수적으로 필요하다. 그러나 공개된 개체명 사전은 거의 없기 때문에, 본 논문에서는 디비피디아의 데이터로부터 개체명을 효과적으로 추출하여 자동으로 구축할 수 있는 방법을 제안한다. 제안 방법은 엔트리의 '이름'과 '분류' 정보를 사용한다. 엔트리의 '이름'은 개체명으로 사용하고, 엔트리의 '분류'는 각 개체명 클래스와의 상호정보량을 계산하여 엔트리와 개체명 클래스 사이의 점수를 계산한다. 이렇게 계산된 점수를 이용하여 개체명과 개체명 클래스를 매핑한다. 그 결과 76.7%의 평균 정확률을 보였다.

  • PDF

Automatic Construction of Restaurant Menu Dictionary (음식메뉴 개체명 인식을 위한 음식메뉴 사전 자동 구축)

  • Gu, Yeong-Hyeon;Yoo, Seong-Joon
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.102-106
    • /
    • 2013
  • 레스토랑 리뷰 분석을 위해서는 음식메뉴 개체명 인식이 매우 중요하다. 그러나 현재의 개체명 사전을 이용하여 리뷰 분석을 할 경우 구체적이고 복잡한 음식메뉴명을 표현하는데 충분하지 않으며 지속적인 업데이트가 힘들어 새로운 트렌드의 음식 메뉴명 등이 반영되지 않는 문제가 있다. 본 논문에서는 레스토랑 전문 사이트와 레시피 제공 사이트에서 각 레스토랑의 메뉴 정보와 음식명 등을 래퍼기반 웹 크롤러로 수집하였다. 그런 다음 빈도수가 낮은 음식메뉴와 레스토랑 온라인 리뷰에서 쓰이지 않는 음식메뉴를 제거하여 레스토랑 음식 메뉴 사전을 자동으로 구축하였다. 그리고 레스토랑 온라인 리뷰 문서를 이용해 음식 메뉴 사전의 엔티티들이 어느 유형의 레스토랑 리뷰에서 발견되는지를 찾아 빈도수를 구하고 분류 정보에 따른 비율을 사전에 추가하였다. 이 정보를 이용해 여러 분류 유형에 해당되는 음식메뉴를 구분할 수 있다. 실험 결과 한국관광공사 외국어 용례사전의 음식 메뉴명은 1,104개의 메뉴가 실제 레스토랑 리뷰에서 쓰인데 비해 본 논문에서 구축한 사전은 1,602개의 메뉴가 실제 레스토랑 리뷰에서 쓰여 498개의 어휘가 더 구성되어 있는 것을 확인 할 수 있었다. 이와 아울러, 자동으로 수집한 메뉴의 정확도와 재현율을 분석한다. 실험 결과 정확률은 96.2였고 재현율은 78.4, F-Score는 86.4였다.

  • PDF

Extracting English-Korean Named-Entity Word-pairs using Wikipedia (위키피디아를 이용한 영-한 개체명 대역어 쌍 구축)

  • Kim, Eun-Kyung;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.101-105
    • /
    • 2009
  • 본 논문은 공통적으로 이용할 수 있는 웹 환경에서의 한국어 정보로 획득할 수 있는 정보의 양이 영어권 정보의 양보다 상대적으로 적다는 것을 토대로, 웹정보 이용의 불균형을 해소하고자 하는 목적으로부터 출발하였다. 최근에는 지식 정보의 세계화, 국제화에 따라 동일한 정보를 각국 언어로 제공하고자하는 연구가 꾸준히 증가하고 있다. 온라인 백과사전인 위키피디아 역시 현재 다국어로 제공이 되고 있지만 한국어로 작성된 문서는 영어로 작성된 문서의 5% 미만인 것으로 조사되었다. 본 논문에서는 위키피디아 내에서 제공하는 다국어간의 링크 정보와 인포박스 데이터를 활용하여 위키피디아 문서 내에서 개체명을 인식하고, 자동으로 개체명의 영-한 대역어 쌍을 추출하는 것을 목표로 한다. 개체명은 일반 사전에 등재 되지 않은 경우가 많기 때문에, 기계번역에서 사전 데이터 등을 활용하여 개체명을 처리하는 것은 쉽지 않으며 일반적으로 음차표기 방식을 함께 사용하여 해결하고 있다. 본 논문을 통해 위키피디아 데이터를 활용해 만들어진 영-한 개체명 대역어 사전을 구축하기 위해 사용된 기술은 추후 위키피디아 문서를 기계번역하는데 있어 동일한 방법으로 사용이 가능하며, 구축된 사전 데이터는 추후 영-한 자동 음차표기 연구의 사전 데이터로도 활용이 가능하다.

  • PDF

Syllables-based Named Entity Extraction and Automatic Corpus Construction using Bidirectional Dynamic LSTM (Bidirectional Dynamic LSTM을 이용한 음절 단위 개체명 추출 및 자동화된 말뭉치 구축)

  • Oh, Sungsik;Lim, Changdae;Ahn, Keeho;Park, Weijin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.317-320
    • /
    • 2017
  • 개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.

  • PDF

A Semi-automatic Construction method of a Named Entity Dictionary Based on Wikipedia (위키피디아 기반 개체명 사전 반자동 구축 방법)

  • Song, Yeongkil;Jeong, Seokwon;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1397-1403
    • /
    • 2015
  • A named entity(NE) dictionary is an important resource for the performance of NE recognition. However, it is not easy to construct a NE dictionary manually since human annotation is time consuming and labor-intensive. To save construction time and reduce human labor, we propose a semi-automatic system for the construction of a NE dictionary. The proposed system constructs a pseudo-document with Wiki-categories per NE class by using an active learning technique. Then, it calculates similarities between Wiki entries and pseudo-documents using the BM25 model, a well-known information retrieval model. Finally, it classifies each Wiki entry into NE classes based on similarities. In experiments with three different types of NE class sets, the proposed system showed high performance(macro-average F1-score of 0.9028 and micro-average F1-score 0.9554).

A Study on Construction and Management Tools for Biological Named Entity Dictionary (생물학적 개체명 사전을 위한 구축 및 관리 도구에 관한 연구)

  • Jang, Hyun-Chul;Kim, Tae-Hyun;Lee, Hyun-Sook;Park, Soo-Jun;Park, Seon-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.853-856
    • /
    • 2003
  • 바이오 텍스트 마이닝을 위한 정보 추출의 첫 단계는 생물학적 문헌으로부터의 유전자, 단백질, 세포조직 등과 같은 생물학적 개체명의 인식이다. 생물학적 개체명의 명명법상 특징이 매우 다양하고 저자의 개성에 의해 쉽게 좌우되어 단순히 규칙이나 학습 방법 만으로는 쉽게 개체명들을 인식할 수 없다. 또한, 생물학 관련 문헌에 나오는 가능한 모든 개체명과 이들의 모든 변형을 수록하는 것은 현실적으로 불가능하므로 이를 해결하기 위해 이미 알려진 개체명에 대해서 기본적으로 사전을 탐색하고 알려지지 않은 용어들을 규칙과 통계 기반 방법을 통하여 인식하는 것이 효과적이다. 그러나 만족할 만한 수준의 양질의 사전을 구축하는 것은 쉽지 않을 뿐만 아니라 많은 비용이 소요되며, 어느 순간 만족할 만한 성능을 낼 수 있는 사전을 구축했다. 할지라도 유지 관리 하는 것이 결코 쉬운 일이 아니며 마찬가지로 많은 비용을 필요로 하게 된다. 따라서, 잘 구축된 자원으로부터 필요한 정보를 추출하여 적절한 사전을 자동으로 구축하여 활용하는 방법을 사용할 경우, 사전 구축 및 관리에 드는 많은 비용을 줄이면서도 상당히 효과적인 성능을 얻을 수 있을 것이다. 본 연구에서는 바이오 텍스트 마이닝 엔진을 위한 생물학적 개체명 사전을 자동으로 구축하고 이를 쉽게 관리하도록 하는 도구를 개발하였다.

  • PDF

A Study on Utilization of Wikipedia Contents for Automatic Construction of Linguistic Resources (언어자원 자동 구축을 위한 위키피디아 콘텐츠 활용 방안 연구)

  • Yoo, Cheol-Jung;Kim, Yong;Yun, Bo-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.187-194
    • /
    • 2015
  • Various linguistic knowledge resources are required in order that machine can understand diverse variation in natural languages. This paper aims to devise an automatic construction method of linguistic resources by reflecting characteristics of online contents toward continuous expansion. Especially we focused to build NE(Named-Entity) dictionary because the applicability of NEs is very high in linguistic analysis processes. Based on the investigation on Korean Wikipedia, we suggested an efficient construction method of NE dictionary using the syntactic patterns and structural features such as metadatas.