• Title/Summary/Keyword: 개질가스

Search Result 365, Processing Time 0.027 seconds

A Study on the Burner Structure for Efficient Improvement of Steam Reforming (수증기 개질 반응기의 효율 향상을 위한 버너 구조 연구)

  • Sung, Bong-Hyun;Han, Jae-Chan;Shin, Jang-Sik;Lee, Seung-Young;Yang, Hye-Kyong;Shin, Seok-Jae;Park, Jong-Won;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.20-23
    • /
    • 2007
  • 가정용 연료전지 수소 공급용 연료변환 장치는 LNG, LPG를 이용하여 수소를 제조하는 수증기 개질과 제조된 합성가스의 정제공정으로 저온/고온 전이 반응 및 선택적 산화 반응을 포함하게 된다. 이중 전체 연료변환 장치 효율은 공정중의 유일한 흡열 반응인 수증기 개질 반응기 구조와 반응열 공급용 버너에 의해 결정된다. 반응열 공급용 버너의 형식, 구조 등의 변수를 통해 본 연구진에 의해 개발된 반응구조의 최적 열원 공급 방식을 산출하고자 하였다. 이를 위하여 본 연구에서는 원통형 개질 반응기에 적용 가능한 버너의 구조, 토출 각도, 토출구의 수 등의 버너 설계 변수가 버너의 성능의 미치는 영향에 대하여 연구하였다. 연구에 사용된 버너는 적용 연료의 혼합 특성을 증가시키기 위해 혼합공간을 충분히 유지 하였으며, 버너의 구조와 연소용 기체의 토출각 및 토출구의 위치 변화를 통한 불꽃의 형태를 변화 시켜 반응기 내의 온도 분포 특성을 비교 분석하였으며, 분석 결과에 의해 원통형 개질 반응기에서 최대 효율을 가지는 버너의 구조로부터 수증기 개질 반응을 평가하였다.

  • PDF

A Case Study of Different Configurations for the Performance Analysis of Solid Oxide Fuel Cells with External Reformers (외부 개질형 평판형 고체 산화물 연료전지 시스템 구성법에 따른 효율특성)

  • Lee, Kang-Hun;Woo, Hyun-Tak;Lee, Sang-Min;Lee, Young-Duk;Kang, Sang-Gyu;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.343-350
    • /
    • 2012
  • A planar solid oxide fuel cell (PSOFC) is studied in its application in a high-temperature stationary power plant. Even though PSOFCs with external reformers are designed for application from the distributed power source to the central power plant, such PSOFCs may sacrifice more system efficiency than internally reformed SOFCs. In this study, modeling of the PSOFC with an external reformer was developed to analyze the feasibility of thermal energy utilization for the external reformer. The PSOFC system model includes the stack, reformer, burner, heat exchanger, blower, pump, PID controller, 3-way valve, reactor, mixer, and steam separator. The model was developed under the Matlab/Simulink environment with Thermolib$^{(R)}$ modules. The model was used to study the system performance according to its configuration. Three configurations of the SOFC system were selected for the comparison of the system performance. The system configuration considered the cathode recirculation, thermal sources for the external reformer, heat-up of operating gases, and condensate anode off-gas for the enhancement of the fuel concentration. The simulation results show that the magnitude of the electric efficiency of the PSOFC system for Case 2 is 12.13% higher than that for Case 1 (reference case), and the thermal efficiency of the PSOFC system for Case 3 is 76.12%, which is the highest of all the cases investigated.

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment (Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상)

  • Ji Young-Yeon;Kim Sang-Sik
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.391-396
    • /
    • 2006
  • It has been reported that plasma treatments are used to modify surface properties of polymers such as adhesivity hydrophobicity and hydrophilicity. Using plasma treatment, interfacial pro-perty can be introduced to a polymer surface without affecting the desired bulk properties of a material. In this study, commercial polyamide66 (PA66) /polyphenylene (PPE) polymer was modified by plasma treatment under a various gas specious for elimination of organic compound and polymer surface property with hvdrophilicity. PA66/PPE polymer with hydrophilicity was treated by RF plasma vacuum system under a various parameter such as gas specious, processing time and partial pressure. Hydrophilicity of PA66/PPE was confirmed by calculation of the surface free energy from contact angle measurement. The highest surface free energy of $50.03 mJ/m^2$ with the lowest contact angle of $14^{\circ}$ was obtained at plasma process power of 100 W, treatment time of 2 min and $Ar/O_2$ gases of 100 and 200 sccm. Moreover the change of organic compounds on the polymer surface was analyzed by fourier transforms infrared spectrometry (FTIR).

SynGas Production from Propane using GlidArc Plasma Reforming (부채꼴방전 플라즈마 개질을 이용한 프로판으로부터의 합성가스 생산)

  • Song, Hyoung-Oon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.323-328
    • /
    • 2006
  • The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the GlidArc-assisted $C_3H_8$ reforming reaction for the synthesis gas(SynGas) production without formation of carbon black from propane using GildArc plasma reforming. Also, in order to increase the hydrogen production and the propane conversion rate, 13 wt % nickel catalyst was filled into the catalytic reactor and parametric screening studies were conducted, in which there were the variations of vapor mole ratio$(H_2O/C_3H_8),\;CO_2$ mole ratio($CO_2/C_3H_8$), input power and injection flow rate. When the variations of vapor mole ratio, $CO_2$ mole ratio, input power and injection flow rate were 1.86, 0.48, 1.37 kW and 14 L/min, respectively, the conversion rate of the propane reached its most optimal condition, or 62.6%. Under the condition mentioned above, the dry basic concentrations of the SynGas were $H_2\;44.4%,\;CO\;18.2%,\;CH_4\;11.2%,\;C_2H_2\;2.0%,\;C_3H_6\;1.6%,\;C_2H_4\;0.6%\;and\;C_3H_4$ 0.4%. The conversion rate of carbon dioxide was 29.2% and the concentration ratio of hydrogen to carbon monoxide($H_2/CO$) in the SynGas was 2.4.