This research proposes a method that aims to evaluate the risk levels of websites based on exposure risks of privacy information. The proposed method considers two aspects as follows. First, we define the risk levels of each privacy information according to its own inherent risk. Second, we calculate the visiting probability of a webpage to measure the expected of the actual exposure of privacy information on that webpage. In this research, we implemented an system to prove that automatically collects websites and calculates their risk levels. For the experiments, we used a real world dataset consisting of a total of websites for 4 categories such as university, bank, central government agency, and education. The experiment results show that the websites in the bank category are relatively well managed, while the others are needed to cope with the exposure of privacy information. Finally, the proposed method in this research is expected to be further utilized in establishing a priority-based approach to alleviate of the privacy information exposure problems.
Journal of the Korean Data and Information Science Society
/
v.24
no.5
/
pp.1029-1041
/
2013
Recently, along with emergence of big data, there are incresing demands for releasing information and micro data for public use so that protecting privacy and measuring risk of disclosure for released database become important issues in goverment and business sector as well as academic community. This paper reviews statistical methods for protecting privacy and measuring risk of disclosure when micro data or data analysis sever is released for public use.
정보통신망의 발전과 함께 인터넷 사용 인구와 다양한 개방적 구조의 서비스 이용률이 지속적으로 증가하고 있다. 하지만 서비스 이용자들의 보안의식은 크게 달라지지 않아 서비스 이용자들의 직접적인 입력으로 인터넷상에 노출되는 개인정보가 늘어나고 있는 실정이며 이로 인한 이차적인 침해로 인하여 개인에게 정신적인 피해와 금전적 손괴 심지어는 신체적인 위험을 주는 각종범죄가 행해지고 있다. 본 논문에서는 이와 같은 개인정보의 노출을 예방하기 위해 서비스 이용자가 게시물을 등록하는 과정에서 개인정보의 노출을 예방 할 수 있는 게시물의 등록 방법을 제시한다. 이 방법은 게시물 등록시 게시물에서 검출된 개인정보의 목록과 위험의 정도 그리고 개인정보 노출로 인한 이차적 침해유형을 서비스 이용자에게 명시하고 해당 개인정보에 대한 처리를 서비스 이용자에게 결정하도록 하는 방법으로서 서비스 이용자의 개인 정보보호 의식 수준을 끌어올려 개인정보 노출과 이차적인 침해사고를 일차적으로 예방할 수 있다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.2
/
pp.323-333
/
2024
Recently, Syntheic data has been in the spotlight as a technology that can protect personal information while maintaining the patterns and characteristics of actual data. Accordingly, technical and institutional research on synthetic data is actively being conducted, but it is difficult to actively use synthetic data due to the lack of clear standards and guidelines. This study is a preliminary study for quantifying the disclosure risk of synthetic data, and derives a privacy disclosure risk index through statistical methodology and suggests specific application measures to comply with the General Data Protection Regulation(GDPR). It is expected that the disclosure risk and the balance of data utility can be controlled through the privacy disclosure risk index of this study in an open data environment.
Along with the development of Internet services such as Social Network Service (SNS) and blog Service, the privacy is very important in these services. But personal data is not safety from exposure to internet service. If personal data is leak out, the privacy is disclosed to hacker or illegal person and the personal information can be used in a cyber crime as phishing attacks. Therefore, the model and method that protects to disclose privacy is requested in SNS and blog services. The model must evaluate degree of exposure to protect privacy and the method protects personal information from Internet services. This paper proposes a model to evaluate risk for privacy with property of personal data and exposure level of internet service such as bulletin board. Also, we show a method using degree of risk to evaluate with a proposed model at bulletin board.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.2
/
pp.395-410
/
2015
This research defines the degree of the threat caused by the leakage of personal information in a quantitative way. The proposed definition classifies the individual items in a personal data, then assigns a risk value to each item. The proposed method considers the increase of the risk by the composition of the multiple items. We also deals with various attack scenarios, where the attackers seek different types of personal information. The concept of entropy applies to associate the degree of the personal information exposed with the total risk value. In our experiment, we measured the risk value of the Facebook users with their public profiles. The result of the experiment demonstrates that they are most vulnerable against stalker attacks among four possible attacks with the personal information.
본 논문은 온라인에 공개된 다양한 개인정보의 위험도를 분석하는 기술을 제안한다. 인터넷, SNS에 공개된 다양한 데이터를 수집, 분석하여 개인성향을 파악하고 타겟팅하는 가운데, 분산된 정보를 조합하고 추론하면 공개자의 의도와는 달리 신상이나 민감정보가 노출될 가능성이 크다. 본 논문에서는 이러한 데이터 수집 및 분석을 직접 수행하여 개인정보의 위험도를 분석할 수 있는 기술을 제안한다. 제안 기술이 개발되면, 개인정보 위험도에 따른 클라이언트, 웹사이트, 인터넷 전체 규모의 프라이버시 필터링이 가능해질 것으로 기대된다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.6
/
pp.37-42
/
2015
Although online search engine service provide a convenient means to search for information on the World Wide Web, it also poses a risk of disclosing privacy. Regardless of such risk, most of users are neither aware of their personal information being exposed on search results nor how to redress the issue by requesting removal of information. According to the 2015 parliamentary inspection of government offices, many government agencies were criticized for mishandling of personal information and its leakage on online search engine such as Google. Considering the fact that the personal information leakage via online search engine has drawn the attention at the government level, the online search engine and privacy issue needs to be rectified. This paper, by examining current online search engines, studies the degree of personal information exposure on online search results and its underlying issues. Lastly, based on research result, the paper provides a sound policy and direction to the removal of exposed personal information with respect to search engine service provider and user respectively.
Park, Jun-Bum;Kim, Seok-Hyun;Cho, Jin-Man;Choi, Dae-Seon;Jin, Seung-Hun
Annual Conference of KIPS
/
2014.11a
/
pp.482-485
/
2014
온라인 중고물품 거래의 장점은 인터넷을 사용하는 모든 사용자에게 자신이 팔고자 하는 물건을 쉽게 알릴수 있다는것이다. 하지만 온라인에서 중고물품 거래 시에 개인의 정보를 노출할 경우가 많아지게 되는데 이는 프라이버시를 침해할 수 있다. 온라인 중고물품거래시에 사용자들은 자신이 판매하는 물건과 함께 이메일 주소나 핸드폰 번호를 노출하게 되는데 이 정보를 소셜네트워크서비스에 연결하면 특정인에 정보를 획득할 수 있게 된다. 공격자는 온라인 중고물품거래가 진행되는 곳에서 특정인에 대한 정보를 획득한뒤 소셜네트워크서비스와 정보를 연결하여 특정인에 대한 스토킹이나 피싱, 금융사기같은 범죄를 할 가능성이 있다. 본 논문에서는 개인정보노출에 대한 위험성을 알아보기 위해 중고물품 사이트에서 획득한 개인정보를 소셜네트워크서비스에 연결하여 개인 식별가능성을 실험해 보았으며 이를 막기 위한 방법을 제안하였다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.2
/
pp.51-62
/
2022
This study suggests a design of predictive modeling for a hospital fall risk based on inpatients' posture. Inpatient's profile, medical history, and body measurement data along with basic information about a bed they use, were used to predict a fall risk and suggest an algorithm to determine the level of risk. Fall risk prediction is largely divided into two parts: a real-time fall risk evaluation and a qualitative fall risk exposure assessment, which is mostly based on the inpatient's profile. The former is carried out by recognizing an inpatient's posture in bed and extracting rule-based information to measure fall risk while the latter is conducted by medical staff who examines an inpatient's health status related to hospital fall risk and assesses the level of risk exposure. The inpatient fall risk is determined using a sigmoid function with recognized inpatient posture information, body measurement data and qualitative risk assessment results combined. The procedure and prediction model suggested in this study is expected to significantly contribute to tailored services for inpatients and help ensure hospital fall prevention and inpatient safety.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.