The purpose of this study is to establish a model that can quantitatively diagnose personal color. Representative color systems for personal colors have limitations in that it oversimplify personal color diagnosis types or it is difficult to distinguish objective differences between diagnosis types. To develop a brand new color system that enhances this, a PCCS color system capable of logical color was introduced and reclassified based on the four main properties of color. Twenty diagnostic types, which are more diverse than the existing color system were proposed and a quantitative method was used to evaluate the degree of harmony with a subject to find an optimized type of subject. The experimenter's individual competency and subjective intervention were minimized by devising a matrix in which a type suitable for the subject is derived when the coded evaluation result is substituted. Finally a quantitative diagnosis model of personal color consisting of three stages: property diagnosis, coding, and seasonal diagnosis was constructed. It can be seen that this will give diversity, reliability, and accuracy to the existing diagnostic methods.
Journal of the Korean Society of Clothing and Textiles
/
v.45
no.4
/
pp.685-702
/
2021
This study aims to discover how the perceived attributes of luxury fashion platforms affect consumer trust and satisfaction as well as online word-of-mouth intention. Based on a literature review, this study derived four dimensions of perceived attributes: brand assortment size, exclusivity, convenience, and personalization. The paper presents findings from an online survey targeting 359 consumers in their 20s to 30s who had recent experience with luxury fashion platforms. Based on the collected data, a structural model equation analysis was performed using AMOS 22.0 and SPSS 26.0. The findings illustrated that brand assortment size, exclusivity, and personalization had positive effects on consumers' platform trust. In addition, brand assortment size and convenience had a positive impact on satisfaction. Overall, the findings of the study illustrate that perceived attributes of luxury fashion platforms have a significant impact on consumers' platform trust and satisfaction and online word-of-mouth intentions. This study reveals that consumers' trend orientation moderates the effects of consumer attitude and behavioral intention. The academic practice of this study has laid the foundation for understanding mechanisms of marketing strategies by providing the characteristics of platforms in the luxury fashion industry.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.4
/
pp.537-542
/
2021
Smart TVs provide a variety of services and information compared to existing TVs based on the Internet. In order to provide more personalized services or information, it is necessary to analyze users' viewing patterns and provide customized services or information based on them. The proposed system receives the user's TV viewing pattern, analyzes it, and recommends a TV program or movie as customized information to the user. For this, the system was constructed with a preprocessor and a deep learning model. The preprocessor refines the name of the TV program watched by the user, the date the TV program was watched, and the watched time. Then, the multi-attribute LSTM model trains the refined data and performs prediction.The proposed system is a system that provides customized information to users, and is believed to be a leading technology in digital convergence that combines existing IoT technology and deep learning technology.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.12
/
pp.411-416
/
2020
Field investigations of forests are carried out by writing measured data by hand, and it is a hassle to reorganize the results after a field survey. In this study, a method using object modeling and augmented reality (AR) was applied in a test forest to increase the efficiency of a field investigations. Using a 3D laser scanner, data on were acquired 387 trees within an area of 1 ha at the study site. The coordinates, height, and diameter were calculated through object extraction and modeling of a tree. The proposed can reduce the time required to acquire data in the field and can be used as basic data for building related systems. In addition, the modeling results of trees and a survey using GNSS and AR techniques can be used check coordinates, labor, and attribute information, such as the chest height diameter of the trees being surveyed in the field. The shortcomings of the survey method could be improved. In the future, the method could greatly improve the efficiency of tree surveys and monitoring by reducing the manpower and time required for field surveys.
As the attitudes toward women is ambivalent (both hostile and ambivalent), people have a tendency to have ambivalent attitudes toward men. Despite conflicts between men and women caused by misogyny and misogyny have recently worsened in a Korean society, most of previous Korean studies have focused on the attitudes toward women. In addition, there has been no scale to measure such ambivalent attitudes toward men in Korea. Therefore, this study was designed to translate and validate the Ambivalence toward Men Inventory, a scale developed and currently utilized in the United State. Sample 1 (183 college students), sample 2 (300 college students), and sample 3 (317 adults) were used. Exploratory and confirmatory factor analyses resulted in 16 items and 2 factors. The tests of convergent and concurrent validity revealed strong evidence for the validity of the Korean version of the Ambivalence toward Men Inventory and the reliabilities of the two factors were .830~.917.
Ground Subsidence has been continuously occurring in densely populated downtown. The main cause of ground subsidence is the damaged underground facility like sewer. Currently, ground subsidence is being dealt with by discovering cavities in ground using GPR. However, this consumes large amount of manpower and cost, so it is necessary to predict hazardous area for efficient operation of GPR. In this study, ◯◯city is divided into 500 m×500 m grids. Then, data set was constructed using the characteristics of the underground facility and ground subsidence in grids. Data set used to machine learning model for ground subsidence risk grade prediction. The purposed model would be used to present a ground subsidence risk map of target area.
Journal of Korean Library and Information Science Society
/
v.53
no.2
/
pp.95-115
/
2022
The purpose of this study is to transform the sub-categorization terms of the National Science and Technology Standards Classification System into technical keywords by applying a machine learning algorithm. For this purpose, AttentionMeSH was used as a learning algorithm suitable for topic word recommendation. For source data, four-year research status files from 2017 to 2020, refined by the Korea Institute of Science and Technology Planning and Evaluation, were used. For learning, four attributes that well express the research content were used: task name, research goal, research abstract, and expected effect. As a result, it was confirmed that the result of MiF 0.6377 was derived when the threshold was 0.5. In order to utilize machine learning in actual work in the future and to secure technical keywords, it is expected that it will be necessary to establish a term management system and secure data of various attributes.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.383-383
/
2023
오늘날 수문학 분야에서는 유역에 대한 강우-유출 시뮬레이션을 머신 러닝(ML: Machine Learning)을 활용하여 다양한 연구를 실행하고 있다. 본 연구에서는 시간별 강우-유출 예측 모델인 GR4H(Génie Rural à 4 paramètres Horaires)를 사용하여 충주댐 유역을 대상으로 연구를 수행하였다. 유역의 속성에 따라서 모델의 성능이 어떻게 달라지는지 비교하여 특성에 맞는 모델을 알아내고. 또한 이 과정에서 기상 및 유출 데이터의 보정 길이를 가지고 어느 정도의 데이터 기간이 모델에서 좋은 성능을 보이는지 파악하였다. 뿐만 아니라 모델에 필요한 선행기간의 데이터가 있는 경우와 없는 경우를 비교하여 어떠한 차이를 보이는지, 그리고 선행기간은 얼마나 필요한지 연구를 통하여 알아냈다. 본 연구를 통하여 충주댐 유역에 대한 모델의 적용성 및 성능을 파악하고 수문 모형 구축에 제한이 있는 유역에 대해서도 사용이 가능한지 판단한다. 실험 유역의 관측 값을 모델에 입력한 후 각 모델에 해당하는 매개변수의 최적값을 찾아내는 과정을 거쳐 시뮬레이션을실 행했다. 본 연구에서 사용한 강우-유출 모델인 GR4H는 프랑스의 INRAE-Antony(Institut National de la recherche agronomique-Antony)에서 만들어진 airGR의 일종으로, 시간별 강우-유출 예측을 위해 개발된 공정 기반(process-based)의 집중적, 개념적 수문학 모델이다. 4개의 매개변수(parameter)가 있으며 이는 유역의 특정 속성을 나타낸다. GR4H를 시뮬레이션 하는 과정에서 매개변수의 최적화를 위해 적절한 보정 길이를 파악하여야 한다. 이러한 과정은 4년, 5년, 6년 등 1년씩 데이터의 양을 늘려가며 매개변수를 최적화한다. 이 과정에서 기상 및 유출 데이터의 적절한 보정 길이를 찾아낸다. 시뮬레이션을 통해 얻은 데이터를 관측 값과 비교하여 모델의 성능을 평가하고 다른 관측 값을 통해 시뮬레이션을 실행하여 검증을 거친다.
Overcrowding in an Emergency Department (ED) of hospital is a common phenomenon. To improve the service quality and system performance of the ED, a task assignment rule for the Registered Nurses (RNs) is proposed in this paper. At each task assignment point, the rule prioritizes all treatment requests based on the urgency which is determined by the multiple attributes such as accomplishment time of treatment task, elapsed time of treatment request, total remain time to patient discharge, and number of remain treatments. The values of partial urgency with a single criterion are determined and then overall urgency is computed to find the most urgent one among current requests with the importance weights assigned to the criteria. Through computer simulation, the performance of the proposed rule is compared with current rule in terms of the length of stay and system throughput in a simplified ED system of the hospital M.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.2-5
/
2022
With the advent of deep learning and the rapid development of ICT (Information and Communication Technology), research using artificial intelligence is being actively conducted in various fields of society such as politics, economy, and culture and so on. Deep learning-based artificial intelligence technology is subdivided into various domains such as natural language processing, image processing, speech processing, and recommendation system. In particular, as the industry is advanced, the need for a recommendation system that analyzes market trends and individual characteristics and recommends them to consumers is increasingly required. In line with these technological developments, this paper extracts and classifies attribute information from structured or unstructured text and image big data through deep learning-based technology development of 'language processing intelligence' and 'image processing intelligence', and We propose an artificial intelligence-based 'customized fashion advisor' service integration system that analyzes trends and new materials, discovers 'market-consumer' insights through consumer taste analysis, and can recommend style, virtual fitting, and design support.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.