• Title/Summary/Keyword: 개인화상품추천

Search Result 2, Processing Time 0.019 seconds

A Personalized Product Recommendation Agent on Mobile Internet (무선인터넷 환경에서의 개인화상품추천에이전트)

  • 이승화;이은석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.145-147
    • /
    • 2004
  • 본 논문에서는 무선인터넷 환경에 적합한 개인화된 상품추천에이전트를 제안한다. 기존에 유선인터넷상의 많은 개인화 추천시스템에서는 초기 사용자 모델링을 위해 사용자에게 수많은 질의를 하고 응답을 요구하였다. 그러나 이러한 방식은 무선인터넷 환경에서 정보 전송량에 따른 높은 사용요금을 고려할 때 적용하기 힘든 방식이다. 본 제안 시스템은 사용자의 Social data률 이용하여 사용자를 비슷한 연령과 성별 그룹으로 나누고, 해당 그룹에서 구매율이 높은 상품을 우선 제시한 후, 사용자 행동을 모니터링 하여 암시적(Implicit)피드백을 통해 프로파일을 생성함으로써, 번거로운 질의-응답 과정 없이도 초기 사용자 모델링을 수행할 수 있다. 프로파일 생성 이후에는 이를 기반으로 하여 사용자몰 유사한 취향을 가진 그룹으로 다시 군집화한 후 협력적 추천을 하게 되며, 프로파일에는 해당 상품의 최종 카테고리명과 키워드를 수집함으로써, 상품의 브랜드와 규격정보를 반영한 추천이 가능하다. 또한 추천 상품과 사용자의 구매데이터와의 비교를 수행하여 사용자가 해당상품을 구매하였을 경우, 상품에 대한 취향정보는 그대로 유지하고 관련 상품을 추천하되, 구매한 상품이 중복 추천되지 않도록 하였다. 시스템 평가를 위해 프로토타입을 구현하여, 다수의 사용자에게 시스템을 이용하며 관심품목을 체크하도록 하였고. 추천횟수가 반복되며 히트율이 증가하는 결과를 통해 시스템의 학습속도와 성능을 평가하였다. 그리고 쇼핌몰에서 구매경험이 있는 사용자의 기존 구매데이터와 Social data를 이용한 초기 제시상품을 역으로 비교하여 오랜 시간과 비용 발생 없이도 초기 프로파일 생성의 유효성을 증명하였다. 포함하는 XML 질의에 대해서도 웹에서 캐쉬를 이용한 처리가 효율적임을 확인하였다.키는데 목적이 있다.RED에 비해 향상된 성능을 보여주었다.웍스 네트워크상의 다양한 디바이스들간의 네트워크 다양화와 분산화 기능을 얻을 수 있었고, 기존의 고가의 해외 솔루션인 Echelon사의 LonMaker 소프트웨어를 사용하지 않고도 국내의 순수 솔루션인 리눅스 기반의 LonWare 3.0 다중 바인딩 기능을 통해 저 비용으로 홈 네트워크 구성 관리 서버 시스템 개발에 대한 비용을 줄일 수 있다. 기대된다.e 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아

  • PDF

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.