Proceedings of the Korean Statistical Society Conference
/
2003.10a
/
pp.307-311
/
2003
개인화된 추천시스템(recommendation system)은 자동화된 정보 필터링 기술을 적용하여 고객의 취향에 맞는 아이템(상품, 기사, 컨텐츠 등)을 추천하는 시스템이다. 이러한 추천시스템에서 가장 중요한 것은 고객의 특성을 정확히 파악하여 가장 적절한 아이템을 추천해 줄 수 있는 능력이라고 할 수 있다. 본 연구에서는 추천시스템을 위해 제안된 여러 알고리즘들을 소개하고 그 특징들을 비교하였으며, 연관성규칙발견과 군집분석을 이용한 추천시스템 알고리즘을 실제 자료에 적용하여 그 결과를 살펴보았다.
기업과 소비자간 일대일 상호작용을 가능하게 하는 전자상거래의 기술적 발달을 통해 소비자에게 더 나은 웹 경험을 제공하기 위해 개인화 서비스를 제공하고 있다. 개인화 추천을 수행하기 위해서는 추천을 받을 사용자와 유사한 다른 사용자들의 선호도를 반영하는 협업 필터링 기법이 많이 활용되고 있으며, 많은 사이트들이 추천을 받은 사용자에게 유사한 사용자들을 보여주어 사회망 연결을 위한 기회를 제공하고 있다. 본 연구에서는 웹 기반 개인화 추천 시스템을 이용하여 사용자에게 효과적으로 제품을 추천하기 위해서, 사회적 실재감(Social Presence)이 추천시스템의 만족도에 미치는 영향에 관하여 연구하고자 한다. 또한, 사회적 실재감을 높이기 위한 방안으로 사회망(Social Network) 데이터의 제시를 통해 다양한 차원의 사회적 실재감과 추천시스템에 대한 만족도 및 신뢰간의 영향관계를 분석한다. 이를 위해 실험집단을 나누어 세 가지 차원의 사회적 실재감을 부여하고, 집단간의 추천 시스템에 대한 신뢰와 만족도간에 차이가 있는지를 분석하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.127-130
/
2006
소비자가 최적의 상품을 선택하기 위해서는 충분한 상품정보를 파악하여 상품정보를 일일이 조사해야하는 번거로움이 생긴다. 이러한 문제점을 해결하기 위하여 여러 가지 상품추천방법이 제안되고 있으나 상품추천 과정에서 고객의 기호 변화를 다루는 연구가 부족하다. 본 논문에서는 소비자의 기호 변화에 적응하는 개인화 된 상품 추천을 위하여 베이지안 네트워크를 모델링하여 상품 구매에 따르는 선호도를 분석하고, 추천된 상품에 대한 사용자의 행동으로 관심 정도를 측정하여 추천 리스트를 제공한다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.685-687
/
2005
본 연구에서는 관광정보를 온톨로지로 구축하고, 개인화 추천 방법들 중 규칙 기반 필터링과 학습 에이전트를 적용하여 사용자에게 관광 정보를 정확하게 추천하기 위한 시스템을 설계하였다. 여기에서는 제주도 관광에 관한 정보의 일부를 개인화 추천 시스템에 적합하도록 각각의 도메인 온톨로지로 구축하였으며, 이 도메인 온톨로지를 이용하여 사용자가 선호하는 관광정보를 추천하고, 온톨로지의 클래스들 사이의 관계를 통해 추천된 관광정보와 관련있는 필요한 정보를 추천함으로써 사용자에게 더욱 정확하고 의미적인 정보를 제공할 수 있는 개인화 추천 시스템을 설계하였다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.10a
/
pp.657-660
/
2004
규칙기반의 상품추천시스템은 많은 인터넷 쇼핑몰에서 활용되고 있지만 규칙을 추출할 수 있는 마케팅 전문가 확보와 방대한 양의 고객 데이터 처리의 어려움으로 유용한 규칙을 찾는 것이 매우 어렵다. 본 연구에서는 이러한 규칙기반 상품추천시스템의 단점을 보완할 수 있는 방법으로 전역 최적화 기법의 하나인 유전자 알고리즘을 활용하여 고객정보를 토대로 추천 규칙을 도출할 수 있는 방안을 제시한다. 또한 본 연구에서 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.1
/
pp.7-11
/
2013
Taking experts' knowledge to recommend items has shown some promising results in recommender system research. In order to improve the performance of the existing recommendation algorithms, previous researches on expert-based recommender systems have exploited the knowledge of a common expert group for all users. In this paper, we study a problem of identifying personalized experts within a user group, assuming each user needs different kinds and levels of expert help. To demonstrate this idea, we present a framework for using Support Vector Machine (SVM) to find varying expert groups for users; it is shown in an experiment that the proposed SVM approach can identify personalized experts, and that the person-alized expert-based collaborative filtering (CF) can yield better results than k-Nearest Neighbor (kNN) algorithm.
Proceedings of the Korean Operations and Management Science Society Conference
/
2004.05a
/
pp.519-522
/
2004
웹의 급격한 확산과 더불어 고객에게 맞춤화된 정보 제공의 필요성이 높아지고 있다. 또한 전자상거래 기업은 맞춤화와 개인화 서비스를 실현하기 위해서 웹 기반의 추천시스템에 많은 관심을 가지고 있다. 협업필터링(Collaborative filtering)은 개인화된 정보필터링 기법으로 추천시스템에서 가장 많이 사용되고 있다. 본 연구에서는 MovieLens 데이터 셋의 아이템속성을 고려하여 클러스터링 기반의 사례기반추론을 통한 협업필터링 추천시스템을 개발하고 기존의 방법과 제안된 모델의 성과를 비교 분석하였다.
Kim Jong-Hee;Shim Jang-Sup;Lee Dong-Ha;Jung Soon-Key
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.109-112
/
2006
최근 대용량 추천시스템에 대한 필요성이 증가하고 있고, 특히 대규모 인터넷 쇼핑몰을 위한 개인화 추천 시스템 구조에 대한 관심이 높아지고 있다. 본 논문에서는 k-means 클러스터링과 순차 패턴 기법을 이용한 인터넷 쇼핑몰 상품 추천 시스템을 설계 및 구현한다. 사용자 정보의 일괄처리와 카테고리의 계층적 특성을 반영하면서 데이터 마이닝 기법을 활용하여 개인화된 추천 엔진을 대형 시스템에서 동작하도록 설계 하였다. 설계 구현한 시스템의 평가를 위해, 대형 쇼핑몰의 데이터를 이용하여 추천 예측 정확율(PRP: Predictive Recommend Precision), 추천 예측 재현율(PRR: Predictive Recommend Recall), 정확도 인수(PF1 : Predictive Factor One-measure)를 구하였다.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.68-71
/
2008
웹 상에 정보가 폭발적으로 증가함에 따라 각 사용자에게 맞는 정보를 선별하여 제공하는 개인화 서비스는 매우 중요한 이슈가 되었다. 기존 추천시스템들은 컨텐츠 기반 필터링과 협업 필터링 기법을 기반으로 한다. 그러나 이러한 방법들은 충분히 수집된 사용자 정보를 필요로 하기 때문에, 적절한 추천이 이루어지기 까지 다소 시간이 소요되는 문제를 가지고 있다. 또한 사용자의 성향이 지나치게 편중되는 경우, 사용자의 취향변화를 반영하여 새로운 상품을 추천하는 것은 어렵다. 실제로 사용자들은 웹 사이트의 방문 목적에 따라 개인화된 상품추천을 원하기도 하고, 많은 사용자들에게 인기 있는 상품을 원하기도 한다. 본 논문에서는 사용자의 행동분석을 기반으로, 협업 필터링을 기반으로 하는 개인화된 추천과 다수의 사용자들에게 공통적으로 인기 있는 상품의 추천 비율을 동적으로 조합하여 최종 추천 상품들을 선별하는 새로운 적응형 추천 시스템을 제안한다. 본 논문에서는 MovieLens의 데이터 셋을 이용하여 기존 추천기법들과 추천결과에 대한 정확도를 비교 실험하였으며, 보다 높은 정확도를 보이는 실험결과를 통해 제안시스템의 유효성을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.587-590
/
2016
최근 통신 기술의 발달로 온라인을 통한 대규모 콘텐츠의 유통이 가능해졌으나, 사용자들은 수많은 콘텐츠 사이에서 원하는 정보를 찾는 시간이 단축되는 것을 원했다. 이로 인해 다양한 분야에서 개인화된 콘텐츠를 추천해주는 추천 시스템(recommendation system)에 대한 요구가 점차 높아졌다. 그럼에도 불구하고 시니어를 위한 추천 시스템에 대한 연구는 매우 부족하다. 또한, 시니어 세대의 변화에 따라 시니어 관련 콘텐츠 연구도 다양하게 진행되고 있으나, 스마트 기기 및 서비스가 젊은 층에 친화적으로 개발됨으로써 시니어 층의 접근성을 감소시키고 있다. 이에 본 연구에서는 다양한 신체적 변화를 겪는 시니어 세대 위해 추천 시스템에서 인지반응 데이터를 이용하여 콘텐츠를 시청하기 적합한 환경을 제공함과 동시에 활동 이력을 중심으로 개인화 추천 시스템을 설계하여 시니어 사용자들의 개념 변화(concept drift) 문제로 사용자가 원하지 않는 콘텐츠를 추천받을 가능성을 줄일 수 있도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.