• Title/Summary/Keyword: 개인화된 추천 시스템

Search Result 375, Processing Time 0.026 seconds

개인화를 위한 추천시스템 알고리즘에 관한 연구

  • Gang, Hyeon-Cheol;Han, Sang-Tae;Sin, Yeon-Ju
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.307-311
    • /
    • 2003
  • 개인화된 추천시스템(recommendation system)은 자동화된 정보 필터링 기술을 적용하여 고객의 취향에 맞는 아이템(상품, 기사, 컨텐츠 등)을 추천하는 시스템이다. 이러한 추천시스템에서 가장 중요한 것은 고객의 특성을 정확히 파악하여 가장 적절한 아이템을 추천해 줄 수 있는 능력이라고 할 수 있다. 본 연구에서는 추천시스템을 위해 제안된 여러 알고리즘들을 소개하고 그 특징들을 비교하였으며, 연관성규칙발견과 군집분석을 이용한 추천시스템 알고리즘을 실제 자료에 적용하여 그 결과를 살펴보았다.

  • PDF

웹 기반 추천시스템에서 사회적 실재감이 추천 만족도에 미치는 영향

  • Choe, Jae-Won;Lee, Hong-Ju
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.585-590
    • /
    • 2007
  • 기업과 소비자간 일대일 상호작용을 가능하게 하는 전자상거래의 기술적 발달을 통해 소비자에게 더 나은 웹 경험을 제공하기 위해 개인화 서비스를 제공하고 있다. 개인화 추천을 수행하기 위해서는 추천을 받을 사용자와 유사한 다른 사용자들의 선호도를 반영하는 협업 필터링 기법이 많이 활용되고 있으며, 많은 사이트들이 추천을 받은 사용자에게 유사한 사용자들을 보여주어 사회망 연결을 위한 기회를 제공하고 있다. 본 연구에서는 웹 기반 개인화 추천 시스템을 이용하여 사용자에게 효과적으로 제품을 추천하기 위해서, 사회적 실재감(Social Presence)이 추천시스템의 만족도에 미치는 영향에 관하여 연구하고자 한다. 또한, 사회적 실재감을 높이기 위한 방안으로 사회망(Social Network) 데이터의 제시를 통해 다양한 차원의 사회적 실재감과 추천시스템에 대한 만족도 및 신뢰간의 영향관계를 분석한다. 이를 위해 실험집단을 나누어 세 가지 차원의 사회적 실재감을 부여하고, 집단간의 추천 시스템에 대한 신뢰와 만족도간에 차이가 있는지를 분석하였다.

  • PDF

A Personalized Recommender Agent Using Bayesian Network (베이지안 네트워크를 이용한 개인화 된 상품 추천 에이전트)

  • Park, Jin-Hui;Jeong, Hwan-Muk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.127-130
    • /
    • 2006
  • 소비자가 최적의 상품을 선택하기 위해서는 충분한 상품정보를 파악하여 상품정보를 일일이 조사해야하는 번거로움이 생긴다. 이러한 문제점을 해결하기 위하여 여러 가지 상품추천방법이 제안되고 있으나 상품추천 과정에서 고객의 기호 변화를 다루는 연구가 부족하다. 본 논문에서는 소비자의 기호 변화에 적응하는 개인화 된 상품 추천을 위하여 베이지안 네트워크를 모델링하여 상품 구매에 따르는 선호도를 분석하고, 추천된 상품에 대한 사용자의 행동으로 관심 정도를 측정하여 추천 리스트를 제공한다.

  • PDF

Design of Personalized Recommendation System about Tourist Information Using Ontology (온톨로지를 이용한 관광정보 개인화 추천 시스템 설계)

  • Hwang Myunggwun;Kong Hyunjang;Jung Kwanho;Kim Pankoo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.685-687
    • /
    • 2005
  • 본 연구에서는 관광정보를 온톨로지로 구축하고, 개인화 추천 방법들 중 규칙 기반 필터링과 학습 에이전트를 적용하여 사용자에게 관광 정보를 정확하게 추천하기 위한 시스템을 설계하였다. 여기에서는 제주도 관광에 관한 정보의 일부를 개인화 추천 시스템에 적합하도록 각각의 도메인 온톨로지로 구축하였으며, 이 도메인 온톨로지를 이용하여 사용자가 선호하는 관광정보를 추천하고, 온톨로지의 클래스들 사이의 관계를 통해 추천된 관광정보와 관련있는 필요한 정보를 추천함으로써 사용자에게 더욱 정확하고 의미적인 정보를 제공할 수 있는 개인화 추천 시스템을 설계하였다.

  • PDF

A personalized recommender system using genetic algorithms (유전자 알고리즘을 활용한 개인화된 상품추천시스템 개발)

  • 김병국;김경재
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.657-660
    • /
    • 2004
  • 규칙기반의 상품추천시스템은 많은 인터넷 쇼핑몰에서 활용되고 있지만 규칙을 추출할 수 있는 마케팅 전문가 확보와 방대한 양의 고객 데이터 처리의 어려움으로 유용한 규칙을 찾는 것이 매우 어렵다. 본 연구에서는 이러한 규칙기반 상품추천시스템의 단점을 보완할 수 있는 방법으로 전역 최적화 기법의 하나인 유전자 알고리즘을 활용하여 고객정보를 토대로 추천 규칙을 도출할 수 있는 방안을 제시한다. 또한 본 연구에서 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.

  • PDF

Personalized Expert-Based Recommendation (개인화된 전문가 그룹을 활용한 추천 시스템)

  • Chung, Yeounoh;Lee, Sungwoo;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • Taking experts' knowledge to recommend items has shown some promising results in recommender system research. In order to improve the performance of the existing recommendation algorithms, previous researches on expert-based recommender systems have exploited the knowledge of a common expert group for all users. In this paper, we study a problem of identifying personalized experts within a user group, assuming each user needs different kinds and levels of expert help. To demonstrate this idea, we present a framework for using Support Vector Machine (SVM) to find varying expert groups for users; it is shown in an experiment that the proposed SVM approach can identify personalized experts, and that the person-alized expert-based collaborative filtering (CF) can yield better results than k-Nearest Neighbor (kNN) algorithm.

The Development of Recommender System Using Clustering-based CBR (클러스터링 기반 사례기반추론을 이용한 추천시스템 개발)

  • Lee, Hui-Jeong;Hong, Tae-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.519-522
    • /
    • 2004
  • 웹의 급격한 확산과 더불어 고객에게 맞춤화된 정보 제공의 필요성이 높아지고 있다. 또한 전자상거래 기업은 맞춤화와 개인화 서비스를 실현하기 위해서 웹 기반의 추천시스템에 많은 관심을 가지고 있다. 협업필터링(Collaborative filtering)은 개인화된 정보필터링 기법으로 추천시스템에서 가장 많이 사용되고 있다. 본 연구에서는 MovieLens 데이터 셋의 아이템속성을 고려하여 클러스터링 기반의 사례기반추론을 통한 협업필터링 추천시스템을 개발하고 기존의 방법과 제안된 모델의 성과를 비교 분석하였다.

  • PDF

Design of a Large Real-Time Personalized Recommendation System (대용량 개인화 실시간 상품 추천 시스템 설계)

  • Kim Jong-Hee;Shim Jang-Sup;Lee Dong-Ha;Jung Soon-Key
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.109-112
    • /
    • 2006
  • 최근 대용량 추천시스템에 대한 필요성이 증가하고 있고, 특히 대규모 인터넷 쇼핑몰을 위한 개인화 추천 시스템 구조에 대한 관심이 높아지고 있다. 본 논문에서는 k-means 클러스터링과 순차 패턴 기법을 이용한 인터넷 쇼핑몰 상품 추천 시스템을 설계 및 구현한다. 사용자 정보의 일괄처리와 카테고리의 계층적 특성을 반영하면서 데이터 마이닝 기법을 활용하여 개인화된 추천 엔진을 대형 시스템에서 동작하도록 설계 하였다. 설계 구현한 시스템의 평가를 위해, 대형 쇼핑몰의 데이터를 이용하여 추천 예측 정확율(PRP: Predictive Recommend Precision), 추천 예측 재현율(PRR: Predictive Recommend Recall), 정확도 인수(PF1 : Predictive Factor One-measure)를 구하였다.

  • PDF

An Adaptive Recommendation System based on User Propensity (사용자 성향 기반 적응형 추천시스템)

  • Taehwan Kim;Seunghwa Lee;Jehwan Oh;Eunseok lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.68-71
    • /
    • 2008
  • 웹 상에 정보가 폭발적으로 증가함에 따라 각 사용자에게 맞는 정보를 선별하여 제공하는 개인화 서비스는 매우 중요한 이슈가 되었다. 기존 추천시스템들은 컨텐츠 기반 필터링과 협업 필터링 기법을 기반으로 한다. 그러나 이러한 방법들은 충분히 수집된 사용자 정보를 필요로 하기 때문에, 적절한 추천이 이루어지기 까지 다소 시간이 소요되는 문제를 가지고 있다. 또한 사용자의 성향이 지나치게 편중되는 경우, 사용자의 취향변화를 반영하여 새로운 상품을 추천하는 것은 어렵다. 실제로 사용자들은 웹 사이트의 방문 목적에 따라 개인화된 상품추천을 원하기도 하고, 많은 사용자들에게 인기 있는 상품을 원하기도 한다. 본 논문에서는 사용자의 행동분석을 기반으로, 협업 필터링을 기반으로 하는 개인화된 추천과 다수의 사용자들에게 공통적으로 인기 있는 상품의 추천 비율을 동적으로 조합하여 최종 추천 상품들을 선별하는 새로운 적응형 추천 시스템을 제안한다. 본 논문에서는 MovieLens의 데이터 셋을 이용하여 기존 추천기법들과 추천결과에 대한 정확도를 비교 실험하였으며, 보다 높은 정확도를 보이는 실험결과를 통해 제안시스템의 유효성을 확인하였다.

Personalized Recommendation System Design Using Senior Recognition Response and Online Activity History (시니어 인지반응과 온라인 활동 이력을 활용한 개인화 추천 시스템 설계)

  • Yun, You-Dong;Ji, Hye-Sung;Lim, Heui-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.587-590
    • /
    • 2016
  • 최근 통신 기술의 발달로 온라인을 통한 대규모 콘텐츠의 유통이 가능해졌으나, 사용자들은 수많은 콘텐츠 사이에서 원하는 정보를 찾는 시간이 단축되는 것을 원했다. 이로 인해 다양한 분야에서 개인화된 콘텐츠를 추천해주는 추천 시스템(recommendation system)에 대한 요구가 점차 높아졌다. 그럼에도 불구하고 시니어를 위한 추천 시스템에 대한 연구는 매우 부족하다. 또한, 시니어 세대의 변화에 따라 시니어 관련 콘텐츠 연구도 다양하게 진행되고 있으나, 스마트 기기 및 서비스가 젊은 층에 친화적으로 개발됨으로써 시니어 층의 접근성을 감소시키고 있다. 이에 본 연구에서는 다양한 신체적 변화를 겪는 시니어 세대 위해 추천 시스템에서 인지반응 데이터를 이용하여 콘텐츠를 시청하기 적합한 환경을 제공함과 동시에 활동 이력을 중심으로 개인화 추천 시스템을 설계하여 시니어 사용자들의 개념 변화(concept drift) 문제로 사용자가 원하지 않는 콘텐츠를 추천받을 가능성을 줄일 수 있도록 한다.