• Title/Summary/Keyword: 개선 모델

Search Result 6,513, Processing Time 0.034 seconds

A Integration Model of ISO/IEC 20000 and CMMI-DEV (ISO/IEC 20000과 CMMI-DEV 통합 모델)

  • Seo, Chang-Won;Lee, Sukhoon;Baik, Doo-Kwon
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1493-1496
    • /
    • 2012
  • 소프트웨어 생명주기 중 가장 많은 비용이 유지보수 개발에서 발생한다. 대형 소프트웨어 시스템의 운영 유지보수 표준은 ISO/IEC 20000 으로 프로세스통합운영 및 개선활동 중심이어서 유지보수 개발에 대한 SR(Service Request) 처리시 개발 표준 및 구체적 절차가 미비하다. 그러나 대형 소프트웨어 시스템 구축 개발 시 많이 채택하고 있는 CMMI-DEV 표준을 ISO/IEC 20000 유지보수 조직 및 팀원이 내제화를 함으로써 유지보수 개발의 상호 보완적 프로세스로 명세 명확화 및 품질을 제고할 수 있고, 생산성과 효율성을 증대할 수 있다. 따라서 본 연구에서는 ISO/IEC 20000 유지보수 조직이 운영하고 있는 표준절차에 CMMI-DEV 표준 프로세스를 상호보완적으로 매칭한 표준절차를 적용한 통합모델을 제안한다. ISO/IEC 20000 모델의 개발단계에 CMMI-DEV 프로세스 모델을 적용한 통합 모델을 구축하고 실제 프로젝트에 적용하여 본 연구의 실효성을 검증한다.

Generating Literature-Style Sentences based on Summarized Text (요약문 기반 문학 스타일 문장 생성)

  • Bugwang Choe;Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.67-70
    • /
    • 2022
  • 최근 자연어 생성 연구는 딥러닝 기반의 사전 학습 모델을 중심으로 활발하게 연구되고 있다. 하위 분야 중 하나인 텍스트 확장은 입력 텍스트를 출력에 잘 반영하는 것이 무엇보다도 중요하다. 기존 한국어 기반 텍스트 확장 연구의 경우 몇 개의 개념 집합에 기반해 문장을 생성하도록 한다. 그러나 이는 사람의 실제 발화 길이에 비해 짧고 단순한 문장만을 생성한다는 문제점이 존재한다. 본 논문은 이러한 문제점을 개선하면서 문학 스타일의 문장들을 생성하는 모델을 제안하였다. 또한 동일 모델에 대해 학습 데이터의 양에 따른 성능도 비교하였다. 그 결과, 짧은 요약문을 통해 문학 스타일의 여러 문장들을 생성하는 것을 확인하였고, 학습 데이터를 추가한 모델이 성능이 더 높게 나타나는 것을 확인하였다.

  • PDF

A Lightweight Deep Learning Model for Line-Art Colorization Using Two Stage Generator Model (이중 생성자를 사용한 저용량 선화 자동채색 모델)

  • Lee, Yeongseop;Lee, Seongjin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.19-20
    • /
    • 2020
  • 미디어 산업의 발전으로 스토리보드와 같은 선화 이미지의 자동채색 연구가 국내외에서 진행되고 있다. 하지만 자동채색 모델 용량에 초점을 두는 연구는 아직 진행되고 있지 않다. 기존 자동채색 연구는 모델 용량이 최소 567MB 이상으로 모델 용량이 큰 단점을 가지고 있다. 본 논문에서는 채색을 2단계로 나누는 이중 생성자 구조와 기존 U-Net을 개선한 생성자를 사용해 기존 U-Net에 비해 30%, VGG16/19를 사용한 기법과 비교해 최대 85% 작은 106MB 모델을 생성했고 FID(Fréchet Inception Distance)를 통한 이미지 평가결과 512x512px에서 153.69의 채색성능을 얻었다.

  • PDF

Comparing the Performances of Intent Classifications by Encoder Layer (Encoder Layer를 이용한 의도 분류 성능 비교)

  • Ahn, Hyeok-Ju;Kim, Hye-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.410-413
    • /
    • 2021
  • 본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.

  • PDF

The Cardinality Residual Connection Method Applied to Transformer Model combining with BERT Layer (BERT layer를 합성한 Transformer 모델에 적용한 Cardinality Residual connection 방법)

  • Choi, Gyu-Hyeon;Lee, Yo-Han;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.27-31
    • /
    • 2020
  • 본 논문에서는 BERT가 합성된 새로운 Transformer 구조를 제안한 선행연구를 보완하기 위해 cardinality residual connection을 적용한 새로운 구조의 모델을 제안한다. Transformer의 인코더와 디코더의 셀프어텐션에 BERT를 각각 합성한 모델의 잔차연결을 수정하여 학습 속도와 번역 성능을 개선하고자 한다. 그리고 가중치를 다르게 부여하는 실험으로 어텐션을 선택하는 효과적인 방법을 제시하고 원문의 언어에 맞는 BERT를 사용하는 이유를 설명한다. IWSLT14 독일어-영어 말뭉치와 AI hub에서 제공하는 영어-한국어 말뭉치를 이용한 실험에서는 제안하는 방법의 모델이 기존 모델에 비해 더 나은 학습 속도와 번역 성능을 보였다.

  • PDF

HeavyRoBERTa: Pretrained Language Model for Heavy Industry (HeavyRoBERTa: 중공업 특화 사전 학습 언어 모델)

  • Lee, Jeong-Doo;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.602-604
    • /
    • 2021
  • 최근 자연어 처리 분야에서 사전 학습된 언어 모델은 다양한 응용 태스크에 적용되어 성능을 향상시켰다. 하지만 일반적인 말뭉치로 사전 학습된 언어 모델의 경우 중공업 분야처럼 전문적인 분야의 응용 태스크에서 좋은 성능을 나타내지 못한다. 때문에 본 논문에서는 이러한 문제점을 해결하기 위해 중공업 말뭉치를 이용한 RoBERTa 기반의 중공업 분야에 특화된 언어 모델 HeavyRoBERTa를 제안하고 이를 통해 중공업 말뭉치 상에서 Perplexity와 zero-shot 유의어 추출 태스크에서 성능을 개선시켰다.

  • PDF

A Framework for Continuous operational techniques of AI Model based on Rule (Rule 기반 AI 모델의 지속운용을 위한 프레임워크)

  • Yeong-Ji Park;Tae-Jin Lee
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.432-433
    • /
    • 2023
  • 오늘날 AI 기술은 다양한 분야에서 활용되며 발전해나가고 있다. 하지만 AI 모델의 복잡도가 증가하며 AI의 산출 결과의 해석이 불가능한 Black-box 성격을 지니게 되었고, 이는 실 환경에서 AI 도입의 커다란 걸림돌로 작용하고 있다. 이에 따라 AI 판단 결과에 대한 Interpretation을 제공하는AI Decision Support의 중요성이 커지는 추세이다. 본 논문에서는 Reference 기반 Rule을 통해 AI 모델의 판단 결과에 대한 해석을 제공하고 입력된 데이터에 관한 Rule 적합도를 산출하여 AI Decision Support를 제공하고자 한다. 또한, Rule 적합도 정보를 기반으로 기존의 모델보다 정확한산출 결과를 통해 수집된 데이터의 Label을 확정시킨다. 이를 토대로 AI 모델의 업데이트를 실행하여 지속적으로 AI의 성능을 개선하면서도 지속 운용이 가능한 AI 운용 프레임워크를 제안한다.

A Study on the Performance Improvement of the SASRec Recommendation Model by Optimizing the Hyperparameters (하이퍼파라미터 최적화를 통한 SASRec 추천 모델 성능 개선 연구)

  • Da-Hun Seong;Yujin Lim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.657-659
    • /
    • 2023
  • 최근 스마트폰과 같은 디지털 기기의 보급과 함께 개인화, 맞춤형 서비스의 수요가 늘어나면서 추천 서비스가 주목을 받고 있다. 세션 기반(Session based) 추천 시스템은 사용자의 아이템 선호에 따른 순서 정보를 고려한 학습 추천 모델로, 다양한 산업 분야에서 사용되고 있다. 세션 기반 추천 시스템 중 SASRec(Self-Attentive Sequential Recommendation) 모델은 MC/CNN/RNN 기반의 기존 여러 순차 모델들에 비하여 효율적인 성능을 보인다. 본 연구에서는 SASRec 모델의 하이퍼파라미터 중 배치 사이즈(Batch Size), 학습률 (Learning Rate), 히든 유닛(Hidden Unit)을 조정하여 실험함으로써 하이퍼파라미터에 의한 성능 변화를 분석하였다.

Proposal of Git's commit message classification model using GPT (GPT를 이용한 Git의 커밋메시지 분류모델 제안)

  • Ji-Hoon Choi;Jae-Woong Kim;Youn-Yeoul Lee;Yi-Geun Chae;Hyeon-Ho Seo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.81-83
    • /
    • 2023
  • GIT의 커밋 메시지를 소프트웨어 유지보수 활동 세 가지로 분류하는 연구를 분석하고 정확도를 높일 수 있는 모델들을 분석하였고 관련 모델 중 커밋메시지와 변경된 소스를 같이 활용하는 연구들은 변경된 소스를 분석하기 위해 도구들을 대부분 활용하는데 대부분 특정 언어만 분류할 수 있는 한계가 있다. 본 논문에서는 소스 변경 데이터를 추출할 때 언어의 제약을 없애기 위해 GPT를 이용해 변경된 소스의 요약을 추출하는 과정을 추가함으로써 언어 제약의 한계를 극복할 수 있는 개선된 모델에 관한 연구를 진행하였다. 향후 본 연구 모델의 구현 및 검증을 진행하고 이를 이용해 프로젝트 진행에 활용할 수 있는 솔루션 개발 연구까지 확정해 나갈 예정이다.

  • PDF

Data Augmentation for Alleviating Toxicity of Open-Domain Dialogue System using LLM (LLM을 활용한 오픈 도메인 대화 시스템의 유해성을 완화하는 데이터 증강 기법)

  • San Kim;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.346-351
    • /
    • 2023
  • 오픈 도메인 대화 시스템은 산업에서 다양하게 활용될 수 있지만 유해한 응답을 출력할 수 있다는 위험성이 지적되어 왔다. 본 논문에서는 언급된 위험성을 완화하기 위해 데이터 측면에서 대화 시스템 모델을 개선하는 방법을 제안한다. 대화 모델의 유해한 응답을 유도하도록 설계된 데이터셋을 사용하여 모델이 올바르지 못한 응답을 생성하게 만들고, 이를 LLM을 활용하여 안전한 응답으로 수정한다. 또한 LLM이 정확하게 수정하지 못하는 경우를 고려하여 추가적인 필터링 작업으로 데이터셋을 보완한다. 생성된 데이터셋으로 추가 학습된 대화 모델은 기존 대화 모델에 비해 대화 일관성 및 유해성 면에서 성능이 향상되었음을 확인했다.

  • PDF