Journal of the Institute of Electronics Engineers of Korea CI
/
v.38
no.4
/
pp.59-71
/
2001
The Current CORBA shows some limitations for its successful deployment in real time system applications. Recently, OMG adopted Real-Time CORBA specification, which is defined as an extension to CORBA. The goal of the Real-Time CORBA is to provide a standard for CORBA ORB implementations that support 'end to end predictability'. In order to support 'end-to-end predictability', Real Time CORBA specifies many components such as priority model, communication protocol configuration, thread management, and etc. Among them, 'priority model' is the most important mechanism for avoiding or bounding priority inversion in CORBA invocations. In this paper, we present our efforts on a design ,and implementation of the Priority Model in Real-Time CORBA specification. The implementation is done as an extension of omniORB2(v.3.0.0), a popular open source non real time ORB. Experiment results demonstrate that our priority model implementation shows better performance and predictability than the non real-time ORB.
In this paper, we propose a novel approach to improve the performance of the Convolutional Neural Network(CNN) word embedding model on top of word2vec with the result of performing like doc2vec in conducting a document classification task. The Word Piece Model(WPM) is empirically proven to outperform other tokenization methods such as the phrase unit, a part-of-speech tagger with substantial experimental evidence (classification rate: 79.5%). Further, we conducted an experiment to classify ten categories of news articles written in Korean by feeding words and document vectors generated by an application of WPM to the baseline and the proposed model. From the results of the experiment, we report the model we proposed showed a higher classification rate (89.88%) than its counterpart model (86.89%), achieving a 22.80% improvement. Throughout this research, it is demonstrated that applying doc2vec in the document classification task yields more effective results because doc2vec generates similar document vector representation for documents belonging to the same category.
The Transactions of the Korea Information Processing Society
/
v.6
no.4
/
pp.1058-1070
/
1999
In this paper, we propose a control model which can control the burst input messages of the BSC(Base Station controller) in mobile communication systems more efficiently and reliably, by dividing the input messages characteristically and using multiprocessor system. Using M/M/c/K queueing model, we briefly analyze proposed model to get characteristic parameters which are required to performance improvement. On the base of the results, we compare our proposed model with the conventional one by using SLAM II with regard to the following factors : the call blocking rate of the input message, the distribution of average queue length, the utilization of process controller(server), and the distribution of average waiting time in queue. In addition, we modified our model which has overload control function for burst input messages, and analyzed its performance.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.47
no.3
/
pp.76-82
/
2010
In this paper, we develop Linguistic Model (LM) based on information granules as a systematic approach to generating fuzzy if-then rules from a given input-output data. The LM introduced by Pedrycz is performed by fuzzy information granulation obtained from Context-based Fuzzy Clustering(CFC). This clustering estimates clusters by preserving the homogeneity of the clustered patterns associated with the input and output data. Although the effectiveness of LM has been demonstrated in the previous works, it needs to improve in the sense of performance. Therefore, we focus on the automatic generation of linguistic contexts, addition of bias term, and the transformed form of consequent parameter to improve both approximation and generalization capability of the conventional LM. The experimental results revealed that the improved LM yielded a better performance in comparison with LM and the conventional works for automobile MPG(miles per gallon) predication and Boston housing data.
The mutual risk management in port is really important for operating the enterprise between container terminals who provide port service and shipping liners who use the port service. This study is performed to contribute to obtain the competitive power of domestic shipping and harbor industry by getting solution of mutual risk management which can make Win-Win strategy on each other as an alternative idea. We suggested two kinds of management models to promote common benefits between container terminals and shipping liners. It is necessary to push positive support and cooperation from government and belonging related organizations for activating the Gwangyang port. In this study, we presented the efficient method to manage mutual risks between container terminals and shipping liners.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.7
/
pp.104-115
/
1999
This paper proposes an efficient method for 3D modeling of a human face from trinocular images by reconstructing face surface using range data. By using a trinocular camera system, we mitigated the tradeoff between the occlusion problem and the range resolution limitation which is the critical limitation in binocular camera system. We also propose an MPC_MBS (Matching Pixel Count Multiple Baseline Stereo) area-based matching method to reduce boundary overreach phenomenon and to improve both of accuracy and precision in matching. In this method, the computing time can be reduced significantly by removing the redundancies. In the model generation sub-pixel accurate surface data are achieved by 2D interpolation of disparity values, and are sampled to make regular triangular meshes. The data size of the triangular mesh model can be controlled by merging the vertices that lie on the same plane within user defined error threshold.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.92-92
/
2012
경안천은 팔당호로 직접 유입되는 하천 중 유입량 대비 오염도가 매우 높아 상수원보호를 위한 특별관리가 요구되는 지역이다. 또한 경안천 유역은 수도권과 인접하고 있어, 도시화에 의해 토지이용이 지속적으로 변화되고 있다. 이러한 토지이용의 변화는 불투수면적을 증가시켜 강우시 유출 및 수질오염 발생량을 증가시킨다. 그러므로 불투수면적 증가에 따른 영향을 줄이기 위해서는 친환경 도시개발에 적용하고 있는 LID기법을 도입하여, 개발지역의 불투수면적 발생을 최소화하여야 하며 오염원 발생을 사전에 제어해야 한다. 그러나 도시개발시 무분별한 LID기법 도입은 정부의 막대한 예산 및 인력낭비를 초래하므로 현장적용 전 모델링을 통해 LID기법의 기대효과 및 비용을 산출하여야 하며, 도시 계획 수립시 가장 효과적인 LID기법을 제시하여야 한다. 따라서 효과적인 LID기법을 제시하기 위해서는 LID기법 평가가 가능한 SWMM모형을 이용해야 한다. 하지만 경안천 유역과 같이 유역 내 도시 와 비도시지역이 혼재되어 있는 우리나라의 대부분의 유역은 SWMM모형만으로는 유역의 강우-유출 및 수질 평가가 불가능하기 때문에, 유역 내 도시와 비도시지역의 유출 및 수질관리 평가가 가능한 SWAT-SWMM 연계모델을 이용하여 유출량 및 수질관리 효과를 분석해야 한다. 본 연구에서는 SWAT-SWMM 연계모델을 이용하여 LID기법 별 시나리오를 구축하였고, 시나리오별 유출량 및 수질오염 발생량을 모의하여 분석하였다. 분석결과 상당량의 유출량 저감 및 수질개선 효과가 나타났다. 또한 SWAT-SWMM 연계모델을 이용하여 모의된 수질자료는 환경부에서 제시하고 있는 단위유역 대표지점 수질환경기준 달성의 객관적인 평가를 가능하게 한다. 향후 LID를 적용한 SWAT-SWMM 연계모델을 이용하여 정부에서 규제하는 개발제한구역이 포함된 유역에서의 도시개발시 수질환경기준에 맞는 친환경적인 개발을 할 수 있을 것이라 기대된다.
The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.
In this paper, we present a deep neural network-based prediction model that processes and analyzes the corporate credit and personal credit information of individual business owners as a new method to predict the default rate of individual business more accurately. In modeling research in various fields, feature selection techniques have been actively studied as a method for improving performance, especially in predictive models including many features. In this paper, after statistical verification of macroeconomic indicators (macro variables) and credit information (micro variables), which are input variables used in the default rate prediction model, additionally, through the credit information feature selection method, the final feature set that improves prediction performance was identified. The proposed credit information feature selection method as an iterative & hybrid method that combines the filter-based and wrapper-based method builds submodels, constructs subsets by extracting important variables of the maximum performance submodels, and determines the final feature set through prediction performance analysis of the subset and the subset combined set.
Kim, Cheonghwan;Park, Sungho;Kim, Myeongkyu;Ahn, Eunsoo
Journal of the Korean Society of Propulsion Engineers
/
v.24
no.6
/
pp.28-44
/
2020
In this paper, the scavenging process of various transfer ports was evaluated to improve the performance of a small two-stroke engine for unmanned aerial vehicles. Three-dimensional computational fluid dynamics simulations were performed to four transfer ports for the evaluation, and a three-phase scavenging model was developed and applied to the simulation results for the quantitative comparison of scavenging performance. the short-circuit of fresh charge was restrained and an in-cylinder turbulent kinetic energy was enhanced by changing the transfer port. Also, a difference in the scavenging for each port were confirmed by applying the three-phase model to the simulation results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.