• Title/Summary/Keyword: 개선 모델

Search Result 6,513, Processing Time 0.04 seconds

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.

Research on APC Verification for Disaster Victims and Vulnerable Facilities (재난약자 및 취약시설에 대한 APC실증에 관한 연구)

  • Kim, Seung-Yong;Hwang, In-Cheol ;Kim, Dong-Sik
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.278-281
    • /
    • 2023
  • 연구목적: 본 연구는 요양병원 등 재난취약시설에 재난이 발생할 경우 잔류한 요구조자를 정확하게 파악하여 소방 등 대응기관에 제공하는 APC(Auto People Counting)의 인식률 개선에 목적이 있다. 현재 재난 발생 시 건물 내 요구조자의 현황 파악을 위해 대응기관이 재난 현장에 도착하여 건물관계자에게 직접 물어보고 있다. 이는 요구조자에 대한 부정확한 정보일 가능성이 있어 대응기관의 업무범위가 확대되고 이로인해 구조자의 안전에도 위험이 될 수 있다. APC는 건물내 출입하는 인원을 자동으로 집계하여 실시간 잔류인원 정보를 제공함으로써 재난 시 요구조자 현황을 정확히 파악할 수 있다. 본 연구에서는 APC가 보다 정확하게 출입 인원을 집계할 수 있도록 최적의 인공지능 알고리즘을 선정하는데 목적이 있다. 연구방법: 본 연구에서는 실제 재난취약시설에 설치되어 운영 중인 APC를 대상으로 카메라를 통해 출입 인원의 이미지를 인식하는 알고리즘을 개선하기 위해 CNN모델을 활용하여 베이스라인 모델링을 하였다. 다양한 알고리즘의 성능을 분석하여 상위 7개의 후보군을 선정하고 전이학습 모델을 활용하여 성능이 가장 우수한 최적의 알고리즘을 선정하는 방법으로 연구를 수행하였다. 연구결과: 실험결과 시간과 성능이 가장 좋은 Densenet201, Resnet152v2 모델의 정밀도와 재현율을 확인한 결과 모든 라벨에 대해서 정확도 100%를 나타내는 것을 확인할 수 있었다. 이 중 Densenet201 모델이 더 높은 성능을 보여주었다. 결론: 다양한 인공지능 알고리즘 중 APC에 적용할 수 있는 최적의 알고리즘을 선정하였고 이는 APC의 인식률을 개선하여 재난시 요구조자의 정보를 정확하게 파악하여 신속하고 안전한 구조작업이 가능할 것이다. 이는 요구조자의 안전한 구조뿐만 아니라 구조작업을 수행하는 구조자의 안전을 확보하는 데 기여할 것으로 기대된다. 향후 연무 등 다양한 재난상황에서 재난취약시설 내 출입인원을 정확하게 파악할 수 있도록 알고리즘 분석 및 학습에 대한 추가 연구가 요구된다.

  • PDF

HMM-Based Bandwidth Extension Using Baum-Welch Re-Estimation Algorithm (Baum-Welch 학습법을 이용한 HMM 기반 대역폭 확장법)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.259-268
    • /
    • 2007
  • This paper contributes to an improvement of the statistical bandwidth extension(BWE) system based on Hidden Markov Model(HMM). First, the existing HMM training method for BWE, which is suggested originally by Jax, is analyzed in comparison with the general Baum-Welch training method. Next, based on this analysis, a new HMM-based BWE method is suggested which adopts the Baum-Welch re-estimation algorithm instead of the Jax's to train HMM model. Conclusionally speaking, the Baum-Welch re-estimation algorithm is a generalized form of the Jax's training method. It is flexible and adaptive in modeling the statistical characteristic of training data. Therefore, it generates a better model to the training data, which results in an enhanced BWE system. According to experimental results, the new method performs much better than the Jax's BWE systemin all cases. Under the given test conditions, the RMS log spectral distortion(LSD) scores were improved ranged from 0.31dB to 0.8dB, and 0.52dB in average.