Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.366-366
/
2022
유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.
Transactions of the Korean Society of Mechanical Engineers A
/
v.38
no.11
/
pp.1299-1307
/
2014
In this work, an appropriate analysis model of a precise foot sensor with low detection pressure capability under a low range of variation in the dimensional variables was proposed. With a simple two-dimensional model, it was found that a remarkably high error level sometimes occurred between the analysis and experimental results. In order to overcome the error and improve the performance, a three-dimensional model was introduced, and the detection pressure and sensor characteristics were compared with those of the experimental results, which showed its enhanced performance with less error and higher precision.
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.425-425
/
2012
유기물/무기물 나노 복합체를 사용하여 제작한 메모리 소자는 간단한 공정과 3차원의 고집적, 그리고 플렉서블한 특성을 가지고 있어 차세대 전자 소자 제작에 매우 유용한 소재이기 때문에 많은 연구가 진행되고 있다. 다양한 유기물 메모리 소자중에서 유기 쌍안정성 소자(organic bistable devices, OBD)의 전하 수송 메커니즘은 많이 연구가 되었지만, 트랩의 밀도와 분포에 따른 전기적 특성에 대한 연구는 미흡하다. 본 연구에서는 두 전극 사이에 나노 입자가 분산되어 있는 유기물 박막에 존재하는 트랩의 밀도와 분포로 인해 같은 인가전압에서도 다른 전도율이 나타나는 현상을 분석하였다. 하부 전극으로 Indium-tin-oxide가 코팅된 유리기판과 상부 전극인 Al 사이에 나노입자가 분산된 폴리스티렌 박막을 기억 매체로 사용하는 OBD를 제작하였다. OBD의 전기적 특성을 관찰하기 위하여 space-charge-limited-current (SCLS) 모델을 사용한 이론적인 연구를 실험 결과와 비교 분석하였다. 계산된 전류-전압 결과는 트랩 깊이에 따른 가우스 분포로 이루어진 개선된 SCLS 모델을 사용하였을 때 측정된 전류-전압 결과와 잘 일치 하였다. 낮은 인가전압에서 Ohmic 전류가 생기는 것을 개선된 SCLS 모델과 병렬저항을 사용하여 설명하였다. 이 연구 결과는 유기물/무기물 나노 복합체를 사용하여 제작한 OBD의 트랩의 밀도와 분포에 따른 전기적 특성을 이해하는데 도움을 준다.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.41
no.3
/
pp.1-8
/
2004
The anomalous behavior of the 1/f noise of halo or pocket ion implanted MOSFETs is investigated. The model for the anomalous 1/f noise behaviors of MOSFETs, which consist of inhomogeneous conductance along the channel is improved within a regional approximation as previous works and presented in a fen directly applicable to halo MOSFETs. The presented model reduces to the previous results, discussed in the linear region operation, for small drain bias. Comparisons with experimental results show that the 1/f model based on the regional approach can be applicable for limited ranges, especially for sufficiently large gate bias voltages.
모바일 운영체제 중 안드로이드의 점유율이 높아지면서 모바일 악성코드 위협은 대부분 안드로이드에서 발생하고 있다. 그러나 정상앱이나 악성앱이 진화하면서 권한 등의 단일 특징점으로 악성여부를 연구하는 방법은 유효성 문제가 발생하여 본 논문에서는 다양한 특징점 추출 및 기계학습을 활용하여 극복하고자 한다. 본 논문에서는 APK 파일에서 구동에 필요한 다섯 종류의 특징점들을 안드로가드라는 정적분석 툴을 통해 학습데이터의 특성을 추출한다. 또한 추출된 중요 특징점을 기반으로 모델링을 하는 세 가지 방법을 제시한다. 첫 번째 방법은 보안 전문가에 의해 엄선된 132가지의 특징점 조합을 바탕으로 모델링하는 것이다. 두 번째는 학습 데이터 7,000개의 앱에서 발생 빈도수가 높은 상위 99%인 8,004가지의 특징점들 중 랜덤포레스트 분류기를 이용하여 특성중요도가 가장 높은 300가지를 선정 후 모델링 하는 방법이다. 마지막 방법은 300가지의 특징점을 학습한 다수의 모델을 통합하여 하나의 가중치 투표 모델을 구성하는 방법이다. 최종적으로 가중치 투표 모델인 앙상블 알고리즘 모델을 사용하여 97퍼센트로 정확도가 개선되었고 오탐률도 1.6%로 성능이 개선되었다.
KIPS Transactions on Software and Data Engineering
/
v.10
no.3
/
pp.109-114
/
2021
GAN(Generative Adversarial Network) is an image generation model, which is composed of a generator network and a discriminator network, and generates an image similar to a real image. Since the image generated by the GAN should be similar to the actual image, a loss function is used to minimize the loss error of the generated image. However, there is a problem that the loss function of GAN degrades the quality of the image by making the learning to generate the image unstable. To solve this problem, this paper analyzes GAN-related studies and proposes an edge GAN(eGAN) using edge detection. As a result of the experiment, the eGAN model has improved performance over the existing GAN model.
Ji-Young Chung;So-Yeon Lee;Ye-Lin Yong;Min-Jun Kim
Annual Conference of KIPS
/
2023.11a
/
pp.483-486
/
2023
최근 금융 분야는 예측 모델의 복잡성으로 인한 블랙박스 문제와 금융 규제에 대한 관심이 높아지고 있다. 이에 따라 금융 업계는 신뢰성과 투명성을 강조하며, 특히 신용평가 분야에서 설명 가능한 모델 연구가 활발히 진행되고 있다. 또한, 해당 분야에서 소수 클래스에 대해 충분히 학습하지 못하고 다수 클래스에 과적합 될 수 있는 데이터 불균형 문제 역시 강조되고 있다. 이는 제 2종 오류(Type 2 Error)를 최소화해야 하는 상황에서 더욱 부각되며, 대출 상환 능력이 낮은 고객을 최대한 식별해야 하는 개인 신용평가 문제에서 매우 중요한 화두로 떠오르고 있다. 본 논문에서는 어텐션 메커니즘을 활용하여 모델의 설명 가능성을 개선하고, 분석 결과를 해석하는 데 도움이 되고자 한다. 더 나아가, SMOTE, GAN, ADASYN 등 총 다섯 가지 데이터 증강 기법을 실험하여, 이를 앙상블 하였을 때 소수 클래스 레이블에 대한 분류 정확도를 크게 개선할 수 있음을 확인하였다.
In this paper, We propose detection mood generation system using learning to generate automatically detection model. It is improved manpower, efficiency in time. Proposed detection model generator system is consisted of agent system and manager system. Model generation can do existing standardization by genetic algorithm because do model generation and apply by new detection model. according to experiment results, detection model generation using learning proposed sees more efficiently than existing intrusion detection system. When intrusion of new type occur by implemented system and decrease of the False-Positive rate, improve performance of existing intrusion detection system.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.271-274
/
2002
최근 무선 LAN을 이용한 기술과 제품들이 활발히 출시되고, 이러한 무선환경에 관한 표준 또한 활발히 제정되고 있는 실정이다. 이러한 기술의 발전과 함께 무선 LAN 환경에서의 보안문제가 관심의 대상이 되고 있다. 본 논문에서는 무선 LAN의 표준인 IEEE 802.11에서 사용하고 있는 보안 모델인 WEP과 그 개선방안인 WEP2에 대하여 고찰하고 알려진 취약점 및 개선방안을 제안한다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.107-110
/
1998
차량의 주요 소음원부터 실내 탑승자의 귀의 위치까지 도달되는 소음의 전달에 대한 전체적인 경로 및 주파수특성에 대한 해석은 차량의 구조-음향적인 특성이 복잡하므로 매우 어렵다. 그러나, 중-고주파수에 대한 대책에 있어서는 흡차음재가 유용함은 이미 알려진 사실이다. 차실 벽면에 사용된 흡/차음재는 소음레벨에 부분적인 기여를 함은 물론이고 음질에도 영향을 미친다. 소음 레벨에 있어서는 수백 Hz 이하의 저주파수 성분이 주요하며, 음질에는 중-고주파수 대역의 소음특성이 큰 영향을 미친다[1]. 본 논문에서는, 실험적으로 측정된 소음원의 특성을 수치해석 모델에 이용하여 소음레벨 저감과 음질개선을 위한 흡/차음재의 개선방향을 모색하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.