• Title/Summary/Keyword: 개선 모델

Search Result 6,513, Processing Time 0.039 seconds

A Study on the Improved Broker-based Single Sign-On Model (개선된 브로커 기반 SSO 모델 연구)

  • Kim, Hyun-Jin;Lee, Im-Yeong
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.401-403
    • /
    • 2014
  • 초고속 인터넷 망이 발달함에 따라 다양한 서비스들에 대한 사용자의 요구가 증가되었다. 보통 사용자들은 여러 서비스 사이트를 이용함에 있어 여러 개의 아이디와 패스워드를 기억하여 사용한다. 이러한 불편함을 해결하고 관리측면에서 효과적인 방법으로 제안된 인증 시스템이 SSO(Single Sign-On)이다. SSO 인증 모델 중 브로커 기반의 경우 중앙집중식 시스템 관리를 사용하여 인증 연산처리의 효율성을 증가시키는 장점을 가지고 있으며, 대표적으로 Kerberos 인증이 있다. 하지만 전통적인 Kerberos 인증은 패스워드 공격 및 재전송 공격에 비교적 심각한 위험성을 가지고 있어 그에 대한 연구가 활발히 진행되었다. 이에 본 논문에서는 기존방식의 문제점을 해결하여 보다 개선된 브로커 기반 SSO 인증 모델을 제안하였다.

Numerical Model Updating for Bridge Maintenance Using Digital-Twin Model (교량 유지관리용 디지털 트윈 모델 구축을 위한 수치해석모델 개선 기법)

  • Yoon, Sang-Gwi;Shin, Soobong;Shin, Do Hyoung
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2018
  • As the number of aged bridges increases, the development of efficient bridge maintenance techniques is becoming more important. Particularly, there have been many studies on digital-twin models of bridges for maintenance and SHM (Structure Health Monitering). However, in order to use the digital-twin model for maintenance of the bridge, the model updating process that matches the structural response between the real bridge and the digital-twin bridge model must be done. This study presents a model updating method that adjusts bridge's stiffness and boundary condition with genetic algorithm (GA) using static displacements and verified proposed updating method through field test on PSC girder bridge. This study also proposes a conceptual idea to construct an efficient bridge maintenance system by applying the updated numerical analysis model to the digital-twin model.

An Empirical Study on Robot Localization Based on Particle Filters (파티클 필터 기반의 로봇 측위에 관한 실험적 연구)

  • Kim, Hye-Suk;Kim, Seung-Yeon;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.269-272
    • /
    • 2011
  • 일반적으로 지능형 에이전트에게 요구되는 가장 기초적인 상황 인식 기능 중의 하나가 불확실한 센서 데이터에 의존하여 자신의 현재 위치가 어디인지를 파악하는 일이다. 본 논문에서는 대표적인 확률기반의 측위 기법인 파티클 필터를 실제 로봇 측위에 적용한 실험을 수행하고, 이를 통해 측위 성능을 개선시킬 수 있는 방법들을 찾아본다. 특히 로봇 동작의 오차를 고려하지 않은 비-잡음 상태 전이 모델과 로봇 동작의 오차를 고려한 잡음 모델간의 비교 실험을 통해, 불확실성이 높은 실제 로봇 동작에 보다 근사한 상태 전이 모델이 파티클 필터 측위의 성능 개선에 도움이 될 수 있는지 분석해본다.

Forecasting Container Throughput with Long Short Term Memory (LSTM을 활용한 컨테이너 물동량 예측)

  • Lim, Sangseop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.617-618
    • /
    • 2020
  • 우리나라의 지리적인 여건상 대륙과 연결되지 않기 때문에 해상운송에 절대적으로 의존하고 있다. 해상운송에 있어 항만시설의 확보가 필요하며 대외무역의존도가 높은 우리나라의 경우 더욱 중요한 역할을 한다. 항만시설은 장기적인 항만수요예측을 통해 대규모 인프라투자를 결정하며 단기적인 예측은 항만운영의 효율성을 개선하고 항만의 경쟁력을 제고하는데 기여하므로 예측의 정확성을 높이기 위해 많은 노력이 필요하다. 본 논문에서는 딥러닝 모델 중에 하나인 LSTM(Long Short Term Memory)을 적용하여 우리나라 주요항만의 컨테이너 물동량 단기예측을 수행하여 선행연구들에서 주류를 이뤘던 ARIMA류의 시계열모델과 비교하여 예측성능을 평가할 것이다. 본 논문은 학문적으로 항만수요예측에 관한 새로운 예측모델을 제시하였다는 측면에서 의미가 있으며 실무적으로 항만수요예측에 대한 정확성을 개선하여 항만투자의사결정에 과학적인 근거로서 활용이 가능할 것으로 기대된다.

  • PDF

A Study on the Improvement of Software Education Using VR Block Coding (VR 블록코딩을 활용한 소프트웨어 교육 개선방안 연구)

  • Yoo, Sang-Wook;Lee, Cheong-Ho;Jung, Jin-Oh;Cho, Sung-Hyuk;Han, Sol
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1028-1031
    • /
    • 2021
  • 소프트웨어의 중요성이 커지면서 코딩열풍이 불고 있다. 코딩열풍은 소프트웨어 교육 의무화로 이어졌다. 본 연구는 소프트웨어 교육 개선방안으로 VR 블록코딩을 제안하였다. 본 연구에서 제안한 VR 블록코딩은 최단경로 찾기 모델을 기반으로 교육과정에 따른 컴퓨팅 모델을 설계하여 구현하였다. 컴퓨팅 모델은 입력과 출력, 변수와 연산, 제어구조, 함수생성 및 호출이다. 본 연구에서 제안한 VR 블록코딩이 가능해짐에 따라 초현실사회에 새로운 디지털 교육 콘텐츠에 기여할 것이다.

GAN-based camouflage pattern generation parameter optimization system for improving assimilation rate with environment (야생 환경과의 동화율 개선을 위한 GAN 알고리즘 기반 위장 패턴 생성 파라미터 최적화 시스템)

  • Park, JunHyeok;Park, Seungmin;Cho, Dae-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.511-512
    • /
    • 2022
  • 동물무늬는 서식지에 따라 야생에서 천적으로부터 살아남을 수 있는 중요한 역할을 한다. 동물무늬의 역할 중 하나인 자연과 야생 환경에서 천적의 눈을 피해 위장하는 기능이 있기 때문인데 본 논문에서는 기존 위장무늬의 개선을 위한 GAN 알고리즘 기반 위장 패턴 생성모델을 제안한다. 이 모델은 단순히 색상만을 사용하여 위장무늬의 윤곽선을 Blur 처리를 해서 사람의 관측을 흐리게 만드는 기존의 모델의 단순함을 보완하여 GAN 알고리즘의 활용기술인 Deep Dream을 활용하여 경사 상승법을 통해 특정 층의 필터 값을 조절하여 원하는 부분에 대한 구분되는 패턴을 생성할 수 있어 색뿐만 아니라 위장의 기능이 있는 동물무늬와 섞어 자연과 야생 환경에서 더욱 동화율이 높아진 위장 패턴을 생성하고자 한다.

  • PDF

A Study on the Dataset Construction Needed to Realize a Digital Human in Fitness with Single Image Recognition (단일 이미지 인식으로 피트니스 분야 디지털 휴먼 구현에 필요한 데이터셋 구축에 관한 연구)

  • Soo-Hyuong Kang;Sung-Geon Park;Kwang-Young Park
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.642-643
    • /
    • 2023
  • 피트니스 분야 인공지능 서비스의 성능 개선을 AI모델 개발이 아닌 데이터셋의 품질 개선을 통해 접근하는 방식을 제안하고, 데이터품질의 성능을 평가하는 것을 목적으로 한다. 데이터 설계는 각 분야 전문가 10명이 참여하였고, 단일 시점 영상을 이용한 운동동작 자동 분류에 사용된 모델은 Google의 MediaPipe 모델을 사용하였다. 팔굽혀펴기의 운동동작인식 정확도는 100%로 나타났으나 팔꿉치의 각도 15° 이하였을 때 동작의 횟수를 인식하지 않았고 이 결과 값에 대해 피트니스 전문가의 의견과 불일치하였다. 향후 연구에서는 동작인식의 분류뿐만 아니라 운동량을 연결하여 분석할 수 있는 시스템이 필요하다.

Deep Clustering Based on Vision Transformer(ViT) for Images (이미지에 대한 비전 트랜스포머(ViT) 기반 딥 클러스터링)

  • Hyesoo Shin;Sara Yu;Ki Yong Lee
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.363-365
    • /
    • 2023
  • 본 논문에서는 어텐션(Attention) 메커니즘을 이미지 처리에 적용한 연구가 진행되면서 등장한 비전 트랜스포머 (Vision Transformer, ViT)의 한계를 극복하기 위해 ViT 기반의 딥 클러스터링(Deep Clustering) 기법을 제안한다. ViT는 완전히 트랜스포머(Transformer)만을 사용하여 입력 이미지의 패치(patch)들을 벡터로 변환하여 학습하는 모델로, 합성곱 신경망(Convolutional Neural Network, CNN)을 사용하지 않으므로 입력 이미지의 크기에 대한 제한이 없으며 높은 성능을 보인다. 그러나 작은 데이터셋에서는 학습이 어렵다는 단점이 있다. 제안하는 딥 클러스터링 기법은 처음에는 입력 이미지를 임베딩 모델에 통과시켜 임베딩 벡터를 추출하여 클러스터링을 수행한 뒤, 클러스터링 결과를 임베딩 벡터에 반영하도록 업데이트하여 클러스터링을 개선하고, 이를 반복하는 방식이다. 이를 통해 ViT 모델의 일반적인 패턴 파악 능력을 개선하고 더욱 정확한 클러스터링 결과를 얻을 수 있다는 것을 실험을 통해 확인하였다.

MAdapter: A Refinement of Adapters by Augmenting Efficient Middle Layers (MAdapter: 효율적인 중간 층 도입을 통한 Adapter 구조 개선)

  • Jinhyeon Kim;Taeuk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.517-521
    • /
    • 2023
  • 최근 거대 언어모델의 등장과 동시에, 많은 매개변수를 효과적으로 학습하는 방법인 효율적인 매개변수 미세조정(Parameter Efficient Fine-Tuning) 연구가 활발히 진행되고 있다. 이 중에서 Adapter는 사전학습 언어모델(Pretrained Language Models)에 몇 개의 추가 병목 구조 모듈을 삽입하여 이를 학습하는 방식으로, 등장한 이후 다양한 연구 영역에서 주목받고 있다. 그러나 몇몇 연구에서는 병목 차원을 증가시켜 미세 조정보다 더 나은 성능을 얻는다는 주장이 나오면서, 원래의 의도와는 다른 방향으로 발전하고 있다는 의견도 있다. 이러한 맥락에서, 본 연구에서는 기존의 Adapter 구조를 개선한 MAdapter를 제안한다. MAdapter는 본래 Adapter에 중간 층을 추가하되 학습 가능한 매개변수의 수는 오히려 줄이는 방법으로, 전체 매개변수 수 대비 1% 내외 만을 학습에 활용하며, Adapter 대비 절반 정도의 매개변수만을 사용하여 기존 결과와 비슷하거나 더 나은 성능을 얻을 수 있는 것을 확인할 수 있다. 또한, 병목차원 크기 비교와 중간 층 개수 분석을 통한 최적의 MAdapter 구조를 찾고, 이로써 효율적인 매개변수 미세조정 방법을 제시한다.

  • PDF

LLaMA2 Models with Feedback for Improving Document-Grounded Dialogue System (피드백 기법을 이용한 LLama2 모델 기반의 Zero-Shot 문서 그라운딩된 대화 시스템 성능 개선)

  • Min-Kyo Jung;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.275-280
    • /
    • 2023
  • 문서 그라운딩된 대화 시스템의 응답 성능 개선을 위한 방법론을 제안한다. 사전 학습된 거대 언어 모델 LLM(Large Language Model)인 Llama2 모델에 Zero-Shot In-Context learning을 적용하여 대화 마지막 유저 질문에 대한 응답을 생성하는 태스크를 수행하였다. 본 연구에서 제안한 응답 생성은 검색된 top-1 문서와 대화 기록을 참조해 초기 응답을 생성하고, 생성된 초기 응답을 기반으로 검색된 문서를 대상으로 재순위화를 수행한다. 이 후, 특정 순위의 상위 문서들을 이용해 최종 응답을 생성하는 과정으로 이루어진다. 검색된 상위 문서를 이용하는 응답 생성 방식을 Baseline으로 하여 본 연구에서 제안한 방식과 비교하였다. 그 결과, 본 연구에서 제안한 방식이 검색된 결과에 기반한 실험에서 Baseline 보다 F1, Bleu, Rouge, Meteor Score가 향상한 것을 확인 하였다.

  • PDF