• Title/Summary/Keyword: 개선된 퍼지 이진화

Search Result 45, Processing Time 0.039 seconds

자가 생성 지도 학습 알고리즘을 이용한 컨테이너 식별자 인식

  • Kim, Jae-Yong;Park, Chung-Sik;Kim, Gwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.500-506
    • /
    • 2005
  • 본 논문에서는 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특정이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외하고는 모든 부분을 잡음으로 처리하기 위해 퍼지 추론 방법을 이용하여 식별자 영역과 바탕영역을 구별한다. 식별자 영역으로 구분 된 영역은 그대로 두고, 바탕 영역으로 구분된 영역 은 전체 영상의 평균 픽셀 값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출 하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화 된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출 한다. 개별 식별자 인식을 위해 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. 제안된 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이의 구조를 ART-l을 개선하여 적용하고 은닉층과 출력층 사이에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 및 인식 성능을 개선한다. 실제 80 개의 컨테이너 영상을 대상으로 실험한 결과, 제안된 식별자 추출 방법이 이전의 개별 추출 방법보다 추출률이 개선되었고 FCM 기반 자가 생성 지도 학습 알고리즘보다 제안된 자가 생성 지도 학습 알고리즘이 컨테이너 식별자의 학습 및 인식에 있어서 개선된 것을 확인하였다.색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.앞으로 e-메일, 매신저, 전자결재, 지식관리시스템, 인터넷 방송 시스템의 기반 구조 역할을 할 수 있다. 현재 오픈웨어에 적용하기 위한 P2P 기반의 지능형 BPM(Business Process Management)에 관한 연구와 X인터넷 기술을 이용한 RIA (Rich Internet Application) 기반 웹인터페이스 연구를 진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료

  • PDF

Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm (퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Kim, Kwang-Baek;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1380-1386
    • /
    • 2007
  • This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is blacker white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm. Experiments using real images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.

Defect Extraction of Ceramic Image using Fuzzy Clustering Based Enhanced Fuzzy Binarization (퍼지 클러스터링 기반 개선된 Fuzzy Binarization 기법을 이용한 세라믹 영상에서의 결함 추출)

  • Choi, Cheol Ho;Lee, Jin Yu;Park, Heon Sung;Kim, Kwang Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.23-26
    • /
    • 2019
  • 본 논문에서는 X-Ray 영상에서 용접한 부분의 기공이나 균열 등의 결함 영역을 추출하는 새로운 방법을 제안한다. 제안된 방법은 세라믹 X-Ray 영상에서 비등방성 확산 필터를 적용하여 영상의 잡음을 제거하고, 수직 및 수평 히스토그램을 각각 적용하여 용접 영역을 추출한 후, 최소 자승법을 적용하여 배경 밝기를 제거하고, 사다리꼴 형태의 Fuzzy Stretching기법을 적용하여 명암 값을 강조하여 결함 영역과 그 외의 영역간의 명암 대비를 강조한다. 그리고 Fuzzy C_Means 알고리즘을 적용하여 결함 영역을 세분화한 후, Fuzzy C_Means을 적용하여 생성된 클러스터들의 중심 명암 값을 이용하여 ${\alpha}_-cut$을 설정한 후에 임계구간을 구하고 영상을 이진화하여 최종적으로 결함 영역을 추출한다. 제안된 방법의 결함 추출 성능을 확인하기 위하여 세라믹 X-Ray 영상을 대상으로 실험한 결과, 기존의 방법보다 결함 영역이 정확히 추출되는 것을 확인할 수 있었다.

  • PDF

Container Image Recognition using ART2-based Self-Organizing Supervised Learning Algorithm (ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Jung, Byung-Hee;Kim, Jae-Yong;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.393-398
    • /
    • 2005
  • 본 논문에서는 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡은 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 식별자 영역을 제외한 잡음 영역을 전체 영상의 평균 픽셀값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이에 ART2를 적용하여 은닉층의 노드를 생성하고, 은닉층과 출력층 사이에 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Recognition of Resident Registration Card using ART2-based RBF Network and face Verification (ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식)

  • Kim Kwang-Baek;Kim Young-Ju
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • In Korea, a resident registration card has various personal information such as a present address, a resident registration number, a face picture and a fingerprint. A plastic-type resident card currently used is easy to forge or alter and tricks of forgery grow to be high-degree as time goes on. So, whether a resident card is forged or not is difficult to judge by only an examination with the naked eye. This paper proposed an automatic recognition method of a resident card which recognizes a resident registration number by using a refined ART2-based RBF network newly proposed and authenticates a face picture by a template image matching method. The proposed method, first, extracts areas including a resident registration number and the date of issue from a resident card image by applying Sobel masking, median filtering and horizontal smearing operations to the image in turn. To improve the extraction of individual codes from extracted areas, the original image is binarized by using a high-frequency passing filter and CDM masking is applied to the binaried image fur making image information of individual codes better. Lastly, individual codes, which are targets of recognition, are extracted by applying 4-directional contour tracking algorithm to extracted areas in the binarized image. And this paper proposed a refined ART2-based RBF network to recognize individual codes, which applies ART2 as the loaming structure of the middle layer and dynamicaly adjusts a teaming rate in the teaming of the middle and the output layers by using a fuzzy control method to improve the performance of teaming. Also, for the precise judgement of forgey of a resident card, the proposed method supports a face authentication by using a face template database and a template image matching method. For performance evaluation of the proposed method, this paper maked metamorphoses of an original image of resident card such as a forgey of face picture, an addition of noise, variations of contrast variations of intensity and image blurring, and applied these images with original images to experiments. The results of experiment showed that the proposed method is excellent in the recognition of individual codes and the face authentication fur the automatic recognition of a resident card.

  • PDF