• Title/Summary/Keyword: 개선된 오류 역전파 알고리즘

Search Result 23, Processing Time 0.026 seconds

The Proposed Self-Generation Supervised Learning Algorithm for Image Recognition (영상 인식을 위한 제안된 자가 생성 지도 학습 알고리즘)

  • 이혜현;류재욱;조아현;김광백
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.226-230
    • /
    • 2001
  • 오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.

  • PDF

Recognition of Car Plate using Contour Tracking and Enhanced Backpropagation (윤곽선 추적과 개선된 오류 역전파 알고리즘을 이용한 차량 번호판 인식)

  • Jung, Byung-Hee;Lee, Dong-Min;Park, Choong-Shik;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.467-471
    • /
    • 2005
  • 본 논문에서는 명암도 변화 및 윤곽선 추적 알고리즘과 개선된 오류 역전파 알고리즘을 이용한 차량 번호판 인식 방법을 제안한다. 비영업용 차량 영상을 대상으로 차량 번호판 영역을 추출하기 위해 명암도 변화 특성을 이용하여 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역에 반복 이진화 방법을 적용하여 차량 번호판의 영역을 이진화하고, 이진화된 차량 번호판 영역에 대해서 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 일반화된 델타 학습 방법에 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하는 개선된 오류 역전파 알고리즘을 적용한다. 제안된 방법의 인식 성능을 평가하기 위하여 실제 비영업용 차량 번호판에 적용한 결과, 기존의 차량 번호판 인식 방법보다 효율적인 것을 확인하였다.

  • PDF

Recognition of a New Car Plate using RCB Color Information and Backpropagation (RGB 컬러 정보와 오류 역전파 알고리즘을 이용한 신 차량 번호판 인식)

  • Heo, Jung-Min;Lee, Sang-Soo;Han, Ah-Reum;Kim, Jung-Min;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.457-461
    • /
    • 2005
  • 본 논문에서는 RGB 컬러 정보와 오류 역전파 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정한다. 보정된 차량 영상에서 순수 Red픽셀과 현재 픽셀의 차이와 순수 Green 픽셀과 현재의 픽셀의 차이를 각각 구하여 Red 후보 영역과 Green 후보 영역으로 구분한다. 구분된 2개의 후보 영역의 픽셀 값을 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 그리고 오류 역전파 알고리즘에 의해서 Green 영역으로 판명된 영역을 제외한 영역들은 잡음으로 처리한다. 잡음이 제거된 영역에 대해 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 추출된 번호판 영역에서 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.

  • PDF

Semiconductor Wafer ID Recognition System using an Improved Neural Network (개선된 신경회로망을 이용한 반도체 Wafer ID 인식시스템)

  • 조영임
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.549-552
    • /
    • 2004
  • 본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다 본 논문에서 제안하는 최적조건물 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.

  • PDF

Fuzzy Multilayer Perceptron by Using Self-Generation (자가 생성을 이용한 퍼지 다층 퍼셉트론)

  • 백인호;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.469-473
    • /
    • 2003
  • 다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ARTI에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ARTI과 Max-Min 신경망을 결합한 퍼지 다층 퍼셉트론을 제안한다. 제안된 자가 생성을 이용한 퍼지 다층 퍼셉트론은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ARTI을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

An Optimal Learning System for an Efficient Wafer ID Recognition System (효율적인 Wafer ID 문자인식을 위한 최적 학습시스템)

  • 조영임;홍유식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.199-201
    • /
    • 2004
  • 본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉 층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다. 본 논문에서 제안하는 최적조건을 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.

  • PDF

A Study on Analysis of Dynamic Generation of Initial Weights in EBP Learning (EBP 신경망 학습에서의 동적 초기 가중치 선택에 관한 연구)

  • Kim, Tea-Hun;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.35-38
    • /
    • 2006
  • 다층 퍼셉트론(MLP) 학습 이론인 오류 역전파 알고리즘은 델타룰과 최급 하강법을 사용하기 때문에 학습시 많은 시간이 소요된다는 단점을 가지고 있다. 때문에 신경망에서의 잘못된 초기 가중치 선택은 오류 역전파 알고리즘을 사용하는 신경망에서의 현격한 학습 성능저하를 발생시키게 된다. 본 논문에서는 학습시 오류 역전파 알고리즘의 수렴시간을 개선하기 위한 신경망의 동적 초기 가중치 선택 알고리즘을 제안한다. 이 알고리즘은 학습전 기존의 선택 가중치와 모든 가중치가 1.0 또는 -1.0 값을 가지는 가중치 집합에서 가중치 변동률을 선측정하여 이들 중 가장 변동률이 큰 경우를 초기 가중치 집합으로 선정하게 된다. 즉, 초기의 가중치 변동률을 차후 성능을 판단하는 지표로 사용하여 잘못된 가중치 선택으로 인한 최악의 학습효율의 가능성을 배제시키고 다층 신경망의 학습특성상 평균 이상의 학습효율을 보장하는 초기 가중치 선택방법이다.

  • PDF

ART1-based Fuzzy Supervised Learning Algorithm (ART1 기반 퍼지 지도 학습 알고리즘)

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.479-484
    • /
    • 2005
  • 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART1의 경계 변수의 설정에 따른 인식률이 저하되는 문제점을 개선하기 위해 ART1 알고리즘과 퍼지 단층 지도 학습 알고리즘을 결합한 ART1 기반 퍼지 지도 학습 알고리즘을 제안한다. 제안된 알고리즘은 가중치 조정에 승자 뉴런 방식을 도입하여 은닉층에 해당하는 클래스에 영향을 끼친 패턴들의 정보만 저장하게 하여 은닉층 노드로의 책임 분담에 의한 정체 현상이 일어날 가능성을 줄인다. 그리고 학습시간과 학습의 수렴성도 개선한다. 제안된 알고리즘의 학습 성능을 분석하기 위하여 주민등록번호 분류를 대상으로 실험한 결과, 제안된 방법이 기존의 신경망보다 경계 변수나 모멘트에 민감하지 않으며 학습 시간도 적게 소요되고 수렴성도 우수한 성능이 있음을 확인하였다.

  • PDF

Developed BackPropagation which solve the problem of Local maxima (Local maxima 를 해결하기 위해 개선된 오류역전파 알고리즘)

  • Seo, Won-Taek;Cho, Beom-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.605-608
    • /
    • 2001
  • 다층 신경망의 학습에 쓰이는 오류 역전파 학습은 매우 효과적이지만 학습 속도가 너무 느리고 최적의 은닉충의 뉴런의 수를 결정하는 해답은 아직 없는 실정이다. 또한 가끔은 국부 최소점(Local maxima)에 빠져 학습이 끝내 이루어지지 않는 경우가 있다. 이에 본 논문에서는 이러한 Local maxima 를 효과적으로 탈출 할 수 있는 방법에 대해서 연구해 보았다. 국부 최소점은 연결강도와 전체 오차 사이의 이차원 공간에서 표현할 수 있는데 본 알고리즘은 이러한 연결강도와 오차와의 관계를 인위적으로 변화시켜 결론적으로 Local maxima 를 탈출하게 하는 방법을 소개한다. 본 연구에서 사용된 방법은 네트웍이 학습중에 Local maxima 에 빠졌을 때 은닉층의 뉴런의 수를 추가하여 인위적으로 연결강도 평면의 위상을 변조시킨다. 또한 은닉충의 뉴런의 수를 동적으로 변화 시키면서 최적의 뉴런의 수를 결정할 수 있게 하였다. 위 알고리즘의 성능을 평가하기 위해서 XOR 문제와 $10{\times}8$ 영문폰트와 숫자의 학습에 적용하여 일반적인 역전파 학습과 비교 평가하였다.

  • PDF

ART1-based Fuzzy Supervised Learning Algorithm (ART-1 기반 퍼지 지도 학습 알고리즘)

  • Kim Kwang-Baek;Cho Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.883-889
    • /
    • 2005
  • Error backpropagation algorithm of multilayer perceptron may result in local-minima because of the insufficient nodes in the hidden layer, inadequate momentum set-up, and initial weights. In this paper, we proposed the ART-1 based fuzzy supervised learning algorithm which is composed of ART-1 and fuzzy single layer supervised learning algorithm. The Proposed fuzzy supervised learning algorithm using self-generation method applied not only ART-1 to creation of nodes from the input layer to the hidden layer, but also the winer-take-all method, modifying stored patterns according to specific patterns. to adjustment of weights. We have applied the proposed learning method to the problem of recognizing a resident registration number in resident cards. Our experimental result showed that the possibility of local-minima was decreased and the teaming speed and the paralysis were improved more than the conventional error backpropagation algorithm.