• 제목/요약/키워드: 개선된 네이버 임베딩

검색결과 4건 처리시간 0.019초

개선된 네이버 임베딩에 의한 초해상도 기법 (Super Resolution Technique Through Improved Neighbor Embedding)

  • 엄경배
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권6호
    • /
    • pp.737-743
    • /
    • 2014
  • 단일 영상 초해상도 기법에는 보간 기반 방법과 표본 기반 방법 등이 있다. 보간 기반 방법들은 간결성에 강점을 가지고 있으나, 이들 방법들은 선지식을 이용할 수 없기 때문에 톱니 모양의 윤곽선을 가진 고해상도 영상을 생성하는 경향이 있다. 표본 기반 초해상도 기법에서는 최근방 기반 알고리즘들이 널리 이용되어 지고 있다. 그들 중, 네이버 임베딩은 지역적 선형 임베딩이라는 매니폴드 학습 방법의 개념과 같다. 그러나, 네이버 임베딩은 국부 학습 데이터 집합의 크기가 너무 작은데에 따른 빈약한 일반화 능력으로 인하여, 시각적으로나 정량적인 척도에 의해 취약한 성능을 보인다. 본 논문에서는 이와 같은 문제점을 해결하기 위해 개선된 네이버 임베딩 알고리즘을 제안하였다. 저해상도 입력 영상이 주어지면 고해상도 버전의 화소 값들은 개선된 네이버 임베딩 알고리즘에 의해 구해진다. 실험 결과 제안된 방법이 바이큐빅 보간법이나 네이버 임베딩에 비해 정량적인 척도 및 시각적으로도 우수한 결과를 보였다.

SVR에 기반한 개선된 네이버 임베딩 (Advanced Neighbor Embedding based on Support Vector Regression)

  • 엄경배;전창우;최영희;남승태;이종찬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.733-735
    • /
    • 2014
  • 표본기반 초해상도(Super Resolution 이하 SR) 기법은 데이터베이스에 저장된 고해상도 영상의 패치와 저해상도 영상의 패치 사이에 대응관계를 이용하여, 저해상도의 입력영상에 가장 유사한 고해상도 패치를 덧붙여서 고해상도를 구성하는 방식이다. 이러한 방식은 한 장의 영상만으로 고해상도 영상을 얻을 수 있고, 위의 과정을 반복하여 2배 이상의 확대된 영상을 얻을 수 있어서 기존의 고전적 SR의 문제점을 해결할 수 있다. 표본기반 SR의 방법들 중 네이버 임베딩(Neighbor Embedding 이하 NE) 기법의 기본 원리는 지역적 선형 임베딩이라는 매니폴드 학습방법의 개념과 같다. 그러나 네이버 임베딩의 빈약한 일반화 능력으로 인하여 알고리즘의 성능을 크게 저하시킨다. 이유는 국부학습 데이터 집합의 크기가 너무 작아서 NE 알고리즘의 성능을 현저히 저하시킨다. 본 논문에서는 이와 같은 문제점을 해결하기 위해서 일반화 능력이 뛰어난 Support Vector Regression(이하 SVR)기반 개선된 NE를 제안하였다. 저해상도 입력 패치가 주어지면 SVR 기반 개선된 NE를 이용하여 고해상도의 해당 화소 값을 예측하였다. 실험을 통하여 제안된 기법이 기존의 보간법 및 NE 기법 등에 비해 정량적인 척도 및 시각적으로 향상된 결과를 보여 주었다.

  • PDF

딥러닝 기반 소셜미디어 한글 텍스트 우울 경향 분석 (A Deep Learning-based Depression Trend Analysis of Korean on Social Media)

  • 박서정;이수빈;김우정;송민
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.91-117
    • /
    • 2022
  • 국내를 비롯하여 전 세계적으로 우울증 환자 수가 매년 증가하는 추세이다. 그러나 대다수의 정신질환 환자들은 자신이 질병을 앓고 있다는 사실을 인식하지 못해서 적절한 치료가 이루어지지 않고 있다. 우울 증상이 방치되면 자살과 불안, 기타 심리적인 문제로 발전될 수 있기에 우울증의 조기 발견과 치료는 정신건강 증진에 있어 매우 중요하다. 이러한 문제점을 개선하기 위해 본 연구에서는 한국어 소셜 미디어 텍스트를 활용한 딥러닝 기반의 우울 경향 모델을 제시하였다. 네이버 지식인, 네이버 블로그, 하이닥, 트위터에서 데이터수집을 한 뒤 DSM-5 주요 우울 장애 진단 기준을 활용하여 우울 증상 개수에 따라 클래스를 구분하여 주석을 달았다. 이후 구축한 말뭉치의 클래스 별 특성을 살펴보고자 TF-IDF 분석과 동시 출현 단어 분석을 실시하였다. 또한, 다양한 텍스트 특징을 활용하여 우울 경향 분류 모델을 생성하기 위해 단어 임베딩과 사전 기반 감성 분석, LDA 토픽 모델링을 수행하였다. 이를 통해 문헌 별로 임베딩된 텍스트와 감성 점수, 토픽 번호를 산출하여 텍스트 특징으로 사용하였다. 그 결과 임베딩된 텍스트에 문서의 감성 점수와 토픽을 모두 결합하여 KorBERT 알고리즘을 기반으로 우울 경향을 분류하였을 때 가장 높은 정확률인 83.28%를 달성하는 것을 확인하였다. 본 연구는 다양한 텍스트 특징을 활용하여 보다 성능이 개선된 한국어 우울 경향 분류 모델을 구축함에 따라, 한국 온라인 커뮤니티 이용자 중 잠재적인 우울증 환자를 조기에 발견해 빠른 치료 및 예방이 가능하도록 하여 한국 사회의 정신건강 증진에 도움을 줄 수 있는 기반을 마련했다는 점에서 의의를 지닌다.

의존 구문 분석을 이용한 질의 기반 정답 추출 (Query-based Answer Extraction using Korean Dependency Parsing)

  • 이도경;김민태;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.161-177
    • /
    • 2019
  • 질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.